Понятие энергии. основные виды энергии

Все это разные виды энергии. Для всех происходящих в природе процессов требуется энергия. При любом процессе один вид энергии преобразуется в другой. Продукты питания – картофель, хлеб и т.д. – это хранилища энергии. Почти всю используемую на Земле энергию мы получаем от Солнца. передает Земле столько энергии, сколько произвели бы 100 миллионов мощных электростанций.

Виды энергии

Энергия существует в самых разных видах. Кроме тепловой, световой и энергии есть еще химическая энергия, кинетическая и потенциальная. Электрическая лампочка излучает тепловую и световую энергию. Энергия звука передается при помощи . Волны вызывают вибрацию барабанных перепонок, и поэтому мы слышим звуки. Химическая энергия высвобождается в ходе . Продукты питания, топливо (уголь, бензин), а также батарей­ки - это хранилища химической энергии. Пищевые продукты - это склады химической энергии, высвобождающейся внутри организма.

Движущиеся тела обладают кинетической энергией, т.е. энергией движения. Чем быстрее движется тело, тем боль­ше его кинетическая энергия. Теряя скорость, тело теряет кинетическую энергию. Ударяясь о неподвижный объект, движущееся тело передает ему часть своей кинетической энергии и при­водит его в . Часть энергии, получаемой с пищей, животные обращают в кинетическую.

Потенциальной энергией обладают тела, находящиеся в силовом поле, например в гравитационном или магнитном. Эластичные или упругие тела (обладающие способностью вытягиваться) имеют потенциальную энергию натяжения или упругости. Маятник обладает максимальной потенциальной энергией, когда находится в верхней точке. Разворачиваясь, пружина освобождает свою потенциальную энергию и заставляет колёсики в часах вращаться. Растения получают энергию от и производят питательные вещества - создают запасы химической энергии.

Превращение энергии

Закон сохранения энергии говорит, что энергия не создается из ничего и не теряется бесследно. При всех происходящих в природе процессах один вид энергии превращается в другой. Химическая энергия батареек фонарика превращается в электрическую. В лампочке электрическая энергия превращается в тепловую и световую. Мы привели пример этой «энергетической цепочки» чтобы показать вам, как один вид энергии превращается в другой.

Уголь - это спрессованные останки растении, живших много лет назад. Когда-то они получили энергию от Солнца. Уголь представляет собой запас химической энергии. Когда уголь сгорает, его химическая энергия прекращается в тепловую. Тепловая энергия нагревает , и она испаряется. Пар вращает турбину. производя тем самым кинетическую энергию - энергию движения. Генератор преобразует кинетическую энергию в электрическую. Разнообразные устройства - лампы, обогреватели, магнитофоны - потребляют электроэнергию и переводят в звук, свет и тепло.

Конечными результатами во многих процессах превращения энергии являются свет и тепло. Хотя энергия не пропадает, она уходит в пространство, и её трудно уловить и использовать.

Солнечная энергия

Энергия Солнца доходит до в виде электромагнитных волн. Только так энергия может передаваться через открытый космос. Она может использоваться для создания электроэнергии при помощи фотоэлементов или для нагревания воды в солнечных коллекторах. Панель коллектора поглощает тепловую энергию Солнца. На рисунке показана панель коллектора в разрезе. Черная панель поглощает поступающую от Солнца тепловую энергию, и вода в трубах нагревается. Так устроена крыша дома, обогреваемого Солнцем. Солнечная энергия передаётся воде, используемой для бытовых нужд и отопления. В энергохранилище попадают излишки тепла. Энергия сохраняется при помощи химических реакций.

Энергетические ресурсы

Энергия нужна нам для освещения и обогрева жилищ, для приготовления пищи, для того, чтобы могли работать заводы и двигать­ся автомобили. Эта энергия образуется при сгорании топлива. Есть и другие способы получения энергии - к примеру, ее производят гидроэлектростанции . Для приготовления пищи и обогрева жилья почти половина сжигает дрова, навоз или уголь.

Древесина, уголь, нефть и природный газ называются невозобновимыми ресурса­ми , так как их используют только один раз. Солнце, ветер, вода - это возобновимые энергоресурсы , так как сами они не исчезают при производстве энергии. В своей деятельности человек использует для добычи энергии ископаемые ресурсы – 77%, древесину – 11%, возобновляемые энергоресурсы – 5% и – 3%. Уголь, нефть и природный газ мы называем ископаемым топливом , так как мы добываем их из недр Земли. Образовались они из останков растений и животных. Почти 20% используемой нами энергии производится из угля. При сгорании топлива в попадают углекислый газ и другие газы. В этом отчас­ти заключается причина таких явлений, как кислотные дожди и парниковый эффект. Только около 5 процентов энергии добывается из возобновимых источников. Это энергия Солнца, воды и ветра. Еще один возобновимый источник энергии - газ, образующийся при гниении. Когда органические вещества гниют, выделяются газы, в частности метан. Из него в основном и состоит природный газ, который используется для обогрева домов и нагревания воды. На протяжении нескольких тысячелетий люди используют энергию ветра для пере­движения парусных судов и вращения ветряных мельниц. Ветер также может произ­водить электричество и перекачивать воду.

Единицы измерения энергии и мощности

Для измерения количества энергии употребляется специальная единица - джоуль (Дж). Тысяча джоулей составля­ют один килоджоуль (кДж). Обыкновенное яблоко (около 100 г) содержит 150 кДж химической энергии. В 100 г шоколада содержится 2335 кДж. Мощность - это количество энергии, используемой за единицу времени. Мощность измеряется в ваттах (Вт). Один ватт равен одному джоулю за секунду. Чем больше энергии за определенное время произ­водит тот или иной механизм, тем боль­ше его мощность. Лампочка мощностью в 60 Вт использует 60 Дж в секунду, а лампочка в 100 Вт использует за секунду 100 Дж.

Коэффициент полезного действия

Любой механизм потребляет энергию од­ного вида (например, электрическую) и превращает ее в энергию другого вида. Коэффициент полезного действия (КПД) механизма тем больше, чем большая часть потребляемой энергии превращается в необходимую энергию. КПД почти всех автомобилей невысок. В среднем автомобиль преобразует лишь 15% химической энергии бензина в кинетическую энергию. Вся остальная энергия превращается в тепло. КПД флуоресцентных ламп выше КПД обычных электрических лампочек, поскольку во флуоресцентных лампах больше электричества превращается в свет и меньше уходит на производство тепла.

Т. е. выяснить, как можно сбе­речь энергию, необходимо четко определить, что представляет собой понятие "энергия"?

Энергия (греч. - действие, деятельность) - общая коли­чественная мера различных форм движения материи.

Из данного определения вытекает:

Энергия - это нечто, что проявляется лишь при измене­нии состояния (положения) различных объектов окружающе­го нас мира;

Энергия - это нечто, способное переходить из одной фор­мы в другую (рис. 1.1);

Энергия характеризуется способностью производить по­лезную для человека работу;

Энергия - это нечто, что можно объективно определить, количественно измерить.

Энергия в форме А

Энергия в форме В

Рис. 1.1. Схема превращения энергии из одного вида в другой

Энергию в естествознании в зависимости от природы делят на следующие виды.

Механическая энергия - проявляется при взаимодей­ствии, движении отдельных тел или частиц.

К ней относят энергию движения или вращения тела, энер­гию деформации при сгибании, растяжении, закручивании,

Сжатии упругих тел (пружин). Эта энергия наиболее широко используется в различных машинах - транспортных и техно­логических.

Тепловая энергия - энергия неупорядоченного (хаотичес­кого) движения и взаимодействия молекул веществ.

Тепловая энергия, получаемая чаще всего при сжигании различных видов топлива, широко применяется для отопле­ния, проведения многочисленных технологических процес­сов (нагревания, плавления, сушки, выпаривания, перегон­ки и т. д.).

Для сопоставления различных видов топлива и суммарно­го учета его запасов принята единица учета - условное топли­во, теплота сгорания которого принята за 29,3 МДж/кг (7000 ккал/кг) (табл. 1.1). "

Электрическая энергия - энергия движущихся по элек­трической цепи электронов (электрического тока).

Электрическая энергия применяется для получения меха­нической энергии с помощью электродвигателей и осущест­вления механических процессов обработки материалов: дроб­ления, измельчения, перемешивания; для проведения элек­трохимических реакций; получения тепловой энергии в элек­тронагревательных устройствах и печах; для непосредствен­ной обработки материалов (электроэррозионная обработка).

Химическая энергия - это энергия, "запасенная" в атомах веществ, которая высвобождается или поглощается при хими­ческих реакциях между веществами.

Химическая энергия либо выделяется в виде тепловой при проведении экзотермических реакций (например, горении топлива), либо преобразуется в электрическую в гальваничес­ких элементах и аккумуляторах. Эти источники энергии ха­рактеризуются высоким КПД (до 98 %), но низкой емкостью.

Магнитная энергия - энергия постоянных магнитов, об­ладающих большим запасом энергии, но "отдающих" ее весь­ма неохотно. Однако электрический ток создает вокруг себя протяженные, сильные магнитные поля, поэтому чаще всего говорят об электромагнитной энергии.

Электрическая и магнитная энергии тесно взаимосвязаны друг с другом, каждую из них можно рассматривать как "обо­ротную" сторону другой.

Электромагнитная энергия - это энергия электромагнит­ных волн, т. е. движущихся электрического и магнитного по­лей. Она включает видимый свет, инфракрасные, ультрафио­летовые, рентгеновские лучи и радиоволны.

Таким образом, электромагнитная энергия - это энергия излучения. Излучение переносит энергию в форме энергии электромагнитной волны. Когда излучение поглощается, его энергия преобразуется в другие формы, чаще всего в теплоту.

Ядерная энергия - энергия, локализованная в ядрах ато­мов так называемых радиоактивных веществ. Она высвобож­дается при делении тяжелых ядер (ядерная реакция) или син­тезе легких ядер (термоядерная реакция).

Бытует и старое название данного вида энергии - атомная энергия, однако это название неточно отображает сущность явлений, приводящих к высвобождению колоссальных коли­честв энергии, чаще всего в виде тепловой и механической.

Гравитационная энергия - энергия, обусловленная взаи­модействием (тяготением) массивных тел, она особенно ощу­тима в космическом пространстве. В земных условиях, это, например, энергия, "запасенная" телом, поднятым на опреде­ленную высоту над поверхностью Земли - энергия силы тя­жести.

Таким образом, в зависимости от уровня проявления, мож­но выделить энергию макромира - гравитационную, энергию взаимодействия тел - механическую, энергию молекулярных взаимодействий - тепловую, энергию атомных взаимодей­ствий - химическую, энергию излучения - электромагнит­ную, энергию, заключенную в ядрах атомов - ядерную.

Современная наука не исключает существование и других видов энергии, пока не зафиксированных, но не нарушающих единую естественнонаучную картину мира и понятие об энер­гии.

По большому счету понятие энергии, идея о ней искусствен­ны и созданы специально для того, чтобы быть результатом на­ших размышлений об окружающем мире. В отличие от мате­рии, о которой мы можем сказать, что она существует, энергия - это плод мысли человека, его "изобретение", построенное так, чтобы была возможность описать различные изменения в окружающем мире и в то же время говорить о постоянстве, сох­ранении чего-то, что было названо энергией, даже если наше представление об энергии будет меняться из года в год.

Единицей измерения энергии является 1 Дж (Джоуль). В то же время для измерения количества теплоты используют "ста­рую" единицу - 1 кал (калория) = 4,18 Дж, для измерения ме­ханической энергии используют величину 1 кгм = 9,8 Дж, электрической энергии - 1 кВт-ч = 3,6 МДж, при этом 1 Дж = = 1 Вт-С.

Необходимо отметить, что в естественнонаучной литерату­ре тепловую, химическую и ядерную энергии иногда объеди­няют понятием внутренней энергии, т. е. заключенной внутри вещества.

В текстах, публикуемых на этом сайте, часто встречаются различные термины, которые являются названиями физических величин. Многое мы изучали еще в школьном курсе физике, но знания имеют свойство забываться без постоянного употребления. В серии заметок, объединенных под общим заголовком «Вспоминаем физику» (можно было бы назвать «Снова в школу») мы постараемся напомнить вам, что означают основные термины, какие физические величины за этими терминами скрываются, как они связаны между собой, в каких величинах они измеряются. В общем, дать те основы, которые нужны для понимания публикуемых материалов.

Сайт нас в целом посвящен методам и технологиям получения энергии (конкретно, из возобновляемых источников). Энергия нужна людям для отопления и освещения собственных жилищ, для того, чтобы приводить в движение различные механизмы, которые совершают полезную для людей работу. То есть нам нужно получить в конечном итоге один из трех видов энергии — тепловую, механическую и энергию света. Как будет сказано ниже, в физике различают еще несколько видов энергии, но для нас важны в первую очередь эти три вида. Закончу с предисловиями и приведу те определения энергии, которые приняты в физике.

Работа и энергия

Еще из школьного курса физики (а школу я окончил 50 лет назад) я помню утверждение «Энергия является мерой способности физической системы совершить работу». Википедия дает менее понятное определение, утверждая , что

«Эне́ргия — скалярная физическая величина, являющаяся единой мерой различных форм движения и взаимодействия материи, мерой перехода движения материи из одних форм в другие. Введение понятия энергии удобно тем, что в случае, если физическая система является замкнутой, то её энергия сохраняется в этой системе на протяжении времени, в течение которого система будет являться замкнутой. Это утверждение носит название закона сохранения энергии.»

Энергия является скалярной величиной, для измерения которой применяются несколько разных единиц. Нам наиболее интересны джоуль и киловатт-час.

Джо́уль (русское обозначение: Дж; международное: J) - единица измерения работы, энергии и количества теплоты в Международной системе единиц (СИ). Джоуль равен работе, совершаемой при перемещении точки приложения силы, равной одному ньютону, на расстояние одного метра в направлении действия силы. В электричестве джоуль означает работу, которую совершают силы электрического поля за 1 секунду при напряжении в 1 вольт для поддержания силы тока в 1 ампер.

Впрочем, мы не будем углубляться в основы физики, выясняя, что такое сила и что такое один ньютон, просто примем понятие «энергия» за основу и запомним, что некое количество джоулей характеризует энергию, работу и количество теплоты. Еще одной величиной, с помощью которой измеряют количество энергии, является киловатт-час.

Килова́тт-час (кВт⋅ч) - внесистемная единица измерения количества произведенной или потреблённой энергии, а также выполненной работы. Используется преимущественно для измерения потребления электроэнергии в быту, народном хозяйстве и для измерения выработки электроэнергии в электроэнергетике.

Следует заметить, что правильно писать именно «кВт⋅ч» (мощность, умноженная на время). Написание «кВт/ч» (киловатт в час), часто употребляемое во многих СМИ и даже иногда в официальных документах, неправильно. Такое обозначение соответствует изменению мощности в единицу времени (что обычно никого не интересует), но никак не количеству энергии. Столь же распространённая ошибка - использовать «киловатт» (единицу мощности) вместо «киловатт-час».

В последующих статьях мы будем использовать джоуль и киловатт-час как единицы для оценки количества энергии или работы, имея в виду, что один киловатт-час равен 3,6·10 6 джоулей.

С точки зрения интересующих нас тем именно свойство энергии совершать работу является основополагающим. Мы не будем выяснять, как физика трактует понятие «работа», будем считать, что это понятие является первоначальным и не определяемым. Только еще раз подчеркнем, что количественно энергия и работа выражаются в одних единицах.

В зависимости от вида энергии или работы величина энергии рассчитывается разными способами:

Формы и виды энергии

Поскольку энергия, как сказано выше, является только мерой различных форм движения и взаимодействия материи, мерой перехода движения материи из одних форм в другие, различные формы энергии выделяются в соответствии с различными формами движения материи. Таким образом, в зависимости от уровня проявления, мож­но выделить следующие формы энергии:

  • энергия макромира - гравитационная или энергия притяжения тел,
  • энергия взаимодействия тел - механическая,
  • энергия молекулярных взаимодействий - тепловая,
  • энергия атомных взаимодей­ствий - химическая,
  • энергия излучения - электромагнит­ная,
  • энергия, заключенную в ядрах атомов, - ядерная.

Гравитационная энергия - энергия системы тел (частиц), обусловленная их взаимным гравитационным тяготением. В земных условиях, это, например, энергия, «запасенная» телом, поднятым на опреде­ленную высоту над поверхностью Земли - энергия силы тя­жести. Таким образом, энергию, запасенную в водохранилищах гидроэлектростанций, можно отнести к гравитационной энергии.

Механическая энергия - проявляется при взаимодей­ствии, движении отдельных тел или частиц. К ней относят энергию движения или вращения тела, энер­гию деформации при сгибании, растяжении, закручивании, сжатии упругих тел (пружин). Эта энергия наиболее широко используется в различных машинах - транспортных и техно­логических.

Тепловая энергия - энергия неупорядоченного (хаотичес­кого) движения и взаимодействия молекул веществ. Тепловая энергия, получаемая чаще всего при сжигании различных видов топлива, широко применяется для отопле­ния, проведения многочисленных технологических процес­сов (нагревания, плавления, сушки, выпаривания, перегон­ки и т. д.).

Химическая энергия - это энергия, «запасенная» в атомах веществ, которая высвобождается или поглощается при хими­ческих реакциях между веществами. Химическая энергия либо выделяется в виде тепловой при проведении экзотермических реакций (например, горении топлива), либо преобразуется в электрическую в гальваничес­ких элементах и аккумуляторах. Эти источники энергии ха­рактеризуются высоким КПД (до 98 %), но низкой емкостью.

Электромагнитная энергия - это энергия, порождаемая взаимодействием электрического и магнитного по­лей. Ее подразделяют на электрическую и магнитную энергии. Электрическая энергия - энергия движущихся по элек­трической цепи электронов (электрического тока).

Электромагнитная энергия проявляется также в виде электромагнит­ных волн, то есть в виде излучения, включающего видимый свет, инфракрасные, ультрафио­летовые, рентгеновские лучи и радиоволны. Таким образом, один из видов электромагнитной энергии - это энергия излучения. Излучение переносит энергию в форме энергии электромагнитной волны. Когда излучение поглощается, его энергия преобразуется в другие формы, чаще всего в теплоту.

Ядерная энергия - энергия, локализованная в ядрах ато­мов так называемых радиоактивных веществ. Она высвобож­дается при делении тяжелых ядер (ядерная реакция) или син­тезе легких ядер (термоядерная реакция).

В эту классификацию несколько не укладываются известные нам со школы понятия потенциальной и кинетической энергии. Современная физика считает , что понятия кинетической и потенциальной энергий (а также энергии диссипации) это не формы, а виды энергии :

Кинетическая энергия — энергия, которой обладают тела вследствие своего движения. Более строго , кинетическая энергия есть разность между полной энергией системы и её энергией покоя; таким образом, кинетическая энергия - часть полной энергии, обусловленная движением. Когда тело не движется, кинетическая энергия равна нулю.

Потенциальная энергия — энергия, обусловленная взаимодействием различных тел или частей одного и того же тела. Потенциальная энергия всегда определяется положением тела относительно некоторого источника силы (силового поля).

Энергия диссипации (то есть рассеяния) — переход части энергии упорядоченных процессов в энергию неупорядоченных процессов, в конечном счёте - в теплоту.

Дело в том, что каждая из перечисленных выше форм энергии может проявляться в виде потенциальной и кинетической энергии. То есть виды энергии должны трактоваться в обобщенном смысле, ибо они относятся к любой форме движения и, следовательно, к любой форме энергии. Например, имеется кинетическая электрическая энергия, и это не то же самое, что кинетическая механическая энергия. Это кинетическая энергия движения электронов, а не кинетическая энергия механического движения тела. Точно так же потенциальная электрическая энергия это не то же самое, что потенциальная механическая энергия. А химическая энергия складывается из кинетической энергии движения электронов и электрической энергии их взаимодействия друг с другом и с атомными ядрами.

Вообще, насколько я понял при подготовке этого материала, пока не существует общепринятой классификации форм и видов энергии. Впрочем, возможно нам и не нужно до конца разбираться в этих физических понятиях. Важно только помнить, что энергия — это не какая-то реальная материальная субстанция, а только мера, предназначенная для оценки перемещения некоторых форм материи или преобразования одной формы материи в другую.

С понятием энергии и работы неразрывно связано понятие мощности.

Мо́щность - физическая величина, равная в общем случае скорости изменения, преобразования, передачи или потребления энергии системы. В более узком смысле мощность равна отношению работы, выполняемой за некоторый промежуток времени, к этому промежутку времени.

В Международной системе единиц (СИ) единицей измерения мощности является ватт, равный одному джоулю, делённому на секунду.

Мощность характеризует способность того или иного устройства совершать работу или производить энергию в течение определенного промежутка времени. Связь между мощностью, энергией и временем выражается следующим соотношением:

Киловатт-час (напомним, что это единица измерения энергии) равен количеству энергии, потребляемой (производимой) устройством мощностью один киловатт (единица мощности) в течение одного часа (единица времени) .

Отсюда и уже упомянутое выше равенство 1 кВт⋅ч = 1000 Вт ⋅ 3600 с = 3,6·10 6 Дж = 3,6 МДж.

Из трех рассмотренных на этой странице единиц именно мощность представляет для нас наибольший интерес, поскольку эта величина будет нам встречаться при рассмотрении и сравнении различных ветро- или гидро-генераторов и солнечных панелей. В этих случаях мощность характеризует способность этих устройств производить энергию. И наоборот, указание мощности на многих бытовых электроприборах характеризует потребление энергии этими приборами. Если мы хотим обеспечить некоторую совокупность бытовых приборов энергией, мы должны сопоставить суммарную потребляемую этими приборами мощность с суммарной мощностью, которую можем получить от производителей энергии.

Но подробнее о мощности мы поговорим в следующих статьях, посвященных конкретным видам энергии. И начнем с электрической энергии , рассмотрим, какими величинами характеризуется электричество и в каких единицах оно измеряется.

Это физическая величина, мера разных форм движения и взаимодействия форм материй, их перехода из одних форм в другие. В зависимости от формы движения материи различают такие формы энергии, как механическая, электромагнитная, внутренняя, ядерная и т.д. Но это деление во многом условно. В использование понятия энергии считается целесообразным тогда, когда величина сохраняется при движении, т.е. рассматриваемая система должна быть однородной во времени.

Тепловая энергия представляет собой энергию хаотического движения молекул. В другие виды энергии она превращается с потерями. Электромагнитная - энергия, заключенная в магнитном поле (ее также в зависимости от ситуации делят на электрическую и магнитную). Под гравитационной понимается потенциальная энергия системы частиц (или тел), тяготеющих друг к другу. Ядерная (или атомная) энергия содержится в атомных и выделяется при ядерных реакциях. Эта энергия применяется в атомных электрических станциях для получения тепла (которое используется для обеспечения отопления и электроэнергии), а также в разрушительном ядерном оружии и водородных бомбах. В термодинамике (раздел ) существует понятие внутренней энергии - суммы энергий тепловых движений и молекулярных взаимодействий. Это далеко не весь форм энергии.

С понятием энергии связана теория относительности Эйнштейна, согласно которой есть связь между и массой. Она выражена в формуле E = mc2: энергия системы (E) равна ее массе (m), умноженной на скорость света в квадрате (c2). Под массой принято понимать массу тела в состоянии покоя, а под энергией - внутреннюю энергию системы.

A=Fs=Fт*h=mgh, или Eп=mgh, где:
Eп - потенциальная энергия тела,
m - масса тела,
h - высота тела над поверхностью земли,
g - ускорение свободного падения.

Два вида потенциальной энергии

У потенциальной энергии различается два вида:

1. Энергия при взаимном расположении тел. Такой энергией обладает подвешенный камень. Интересно, но потенциальной энергией обладают и обычные дрова или уголь. В них содержится не окисленный углерод, который может окислиться. Если сказать проще, сгоревшие дрова потенциально могут нагреть воду.

2. Энергия упругой деформации. Для примера здесь можно привести эластичный жгут, сжатую пружину или система «кости-мышцы-связки».

Потенциальная и кинетическая энергия взаимосвязаны. Они могут переходит друг в друга. К примеру, если камень вверх, при движении сначала он обладает кинетической энергией. Когда он достигнет определенной точки, то на мгновение замрет и получит потенциальную энергию, а затем гравитация потянет его вниз и снова возникнет кинетическая энергия.

Источники:

  • Потенциальная и кинетическая энергия

Виды, способы получения, преобразования и использования энергии. Энергия и ее виды. Назначение и использование

Энергия и ее виды. Назначение и использование

Энергия играет решающую роль в развитии человеческой цивилизации. Потребление энергии и накопление Информации имеют примерно одинаковый характер изменения во времени. Существует тесная связь между расходом энергии и объемом выпускаемой продукции.


Согласно представлениям физической науки энергия это способность тела или системы тел совершать работу. Существуют различные классификации видов и форм энергии. Назовем те ее виды, с которыми люди наиболее часто встречаются в своей повседневной жизни: механическая, Электрическая, электромагнитная и внутренняя. К внутренней энергии, относятся тепловая, химическая и внутриядерная (атомная). Внутренняя форма энергии обусловлена потенциальной энергией взаимодействия частиц, составляющих тело, или кинетической энергией их беспорядочного движения.


Если энергия результат изменения состояния движения материальных точек или тел, то она называется кинетической; к ней относят механическую энергию движения тел, тепловую энергию, обусловленную движением молекул.


Если энергия результат изменения взаимного расположения частей данной системы или ее положения по отношению к другим телам, то она называется потенциальной; к ней относят энергию масс, притягивающихся по закону всемирного тяготения, энергию положения однородных частиц, например, энергию упругого деформированного тела, химическую энергию.


Основной источник энергии это солнце. Под действием его лучей хлорофилл растений разлагает углекислоту, поглощаемую из воздуха, на кислород и углерод; последний накапливается в растениях. Уголь, подземный газ, торф, сланцы и дрова представляют собой запасы лучистой, энергии солнца, извлеченные хлорофиллом в виде химической энергии угля и углеводородов. Энергия воды также получается за счет солнечной энергии, испаряющей воду и поднимающей пар в высокие слои атмосферы. Ветер, используемый в ветряных двигателях, возникает в результате различного нагревания солнцем земли в разных местах. Огромные запасы энергии заключены в ядрах атомов химических элементов.


В Международной системе единиц СИ в качестве единицы измерения энергии принят джоуль. Если расчеты связаны с теплотой, биологической, электрической и многими другими видами энергии то в качестве единицы энергии применяется калория (кал) или килокалория (ккал).


1 кал = 4,18 Дж.

Для измерения электрической энергии пользуются такой единицей, как Ваттч (Втч, кВтч, МВтч).


1 Вт. ч = 3,6 МДж или 1 Дж = 1 Вт. с.

Для измерения механической энергии пользуются такой единицей, как кг. м.


1 кг. м = 9,8 Дж.

Энергия, которая содержится в природных источниках (энергоресурсах) и может быть преобразована в электрическую, механическую, химическую, называется первичной.


К традиционным видам первичной энергии, или энергоресурсам, относятся: органическое топливо (уголь, нефть, газ и др.), гидроэнергия рек и ядерное топливо (уран, торий и др.).


Энергия, получаемая человеком после преобразования первичной энергии на специальных установках станциях, называется вторичной (электрическая энергия, энергия пара, горячей воды и т. д.).


В настоящее время широко ведутся работы по применению нетрадиционных, возобновляемых источников энергии: солнечной, ветра, приливов, морских волн, теплоты земли. Эти источники, помимо того, что они возобновляемы, относятся к «чистым» видам энергии, т. к. их использование не приводит к загрязнению окружающей среды.


На рис. 10.1.1 приведена классификация первичной энергии. Выделены традиционные виды энергии, во все времена широко использовавшиеся человеком, и нетрадиционные, сравнительно мало использовавшиеся до последнего времени в силу отсутствия экономичных способов их промышленного преобразования, но особо актуальные сегодня ввиду их высокой экологичности.


Рис. 10.1.1. Схема классификации первичной энергии


На классификационной схеме невозобновляемые и возобновляемые виды энергии обозначены, соответственно, белыми и серыми прямоугольниками.


Потребление энергии необходимого вида и снабжение ею потребителей происходит в процессе энергетического производства, в котором можно выделить пять стадий: 1. Получение и Концентрация энергетических ресурсов: добыча и обогащение топлива, концентрация напора воды с помощью гидротехнических сооружений и т. д.


2. Передача энергетических ресурсов к установкам, преобразующим энергию; она осуществляется перевозками по суше и воде или перекачкой по трубопроводам воды, нефти, газа и т. д.


3. Преобразование первичной энергии во вторичную, имеющую наиболее удобную для распределения и потребления в данных условиях форму (обычно в электрическую и тепловую энергию).


4. Передача и распределение преобразованной энергии.


5. Потребление энергии, осуществляемое как в той форме, в которой она доставлена потребителю, так и в преобразованной.


Если общую энергию применяемых первичных энергоресурсов принять за 100%, то полезно используемая энергия составит только 35—40%, остальная часть теряется, причем большая часть в виде теплоты.

Преимущество электрической энергии

С далеких исторических времен развитие цивилизации и технический прогресс непосредственно связаны с количеством и качеством используемых энергоресурсов. Немногим более половины всей потребляемой Энергии используется в виде тепла для технических нужд, отопления, приготовления пищи, оставшаяся часть в виде механической, прежде всего в транспортных установках, и электрической энергии. Причем доля электрической энергии с каждым годом растет (рис. 10.2.1).


Рис. 10.2.1. Динамика потребления электрической энергии


Электрическая энергия является наиболее удобным видом энергии и по праву может считаться основой современной цивилизации. Подавляющее большинство технических средств механизации и автоматизации производственных процессов (оборудование, приборы, ЭВМ), замена человеческого труда машинным в быту имеют электрическую основу.


Почему же так быстро растет спрос именно на электрическую энергию, в чем ее преимущество?


Ее широкое использование обусловлено следующими факторами: возможностью выработки электроэнергии в больших количествах вблизи месторождений и водных истоков;

  1. возможностью транспортировки на дальние расстояния с относительно небольшими потерями;
  2. возможностью трансформации электроэнергии в другие виды энергии: механическую, химическую, тепловую, световую;
  3. отсутствием загрязнения окружающей среды;
  4. возможностью применения на основе электроэнергии принципиально новых прогрессивных технологических процессов с высокой степенью автоматизации.
Похожие публикации