Закон сохранения энергии изолированной системы. механической энергии

Данный видеоурок предназначен для самостоятельного ознакомления с темой «Закон сохранения механической энергии». Вначале дадим определение полной энергии и замкнутой системы. Затем сформулируем Закон сохранения механической энергии и рассмотрим, в каких областях физики можно его применять. Также мы дадим определение работы и научимся её определять, рассмотрев связанные с ней формулы.

Тема: Механические колебания и волны. Звук

Урок 32. Закон сохранения механической энергии

Ерюткин Евгений Сергеевич

Темой урока является один из фундаментальных законов природы – .

Мы ранее говорили о потенциальной и кинетической энергии, а также о том, что тело может обладать вместе и потенциальной, и кинетической энергией. Прежде чем говорить о законе сохранения механической энергии вспомним, что такое полная энергия. Полной энергией называют сумму потенциальной и кинетической энергий тела. Давайте вспомним, что называют замкнутой системой. Это такая система, в которой находится строго определенное количество взаимодействующих между собой тел, но никакие другие тела извне на эту систему не действуют.

Когда мы определились с понятием полной энергии и замкнутой системы можно говорить о законе сохранения механической энергии. Итак, полная механическая энергия в замкнутой системе тел взаимодействующих друг с другом посредством сил тяготения или сил упругости остается неизменной при любом движении этих тел.

Рассмотреть сохранение энергии удобно на примере свободного падения тела с некоторой высоты. Если некоторое тело находится в состоянии покоя на некоторой высоте относительно Земли, то это тело обладает потенциальной энергией. Как только тело начинает свое движение, высота тела уменьшается, уменьшается и потенциальная энергия. При этом начинает нарастать скорость, появляется энергия кинетическая. Когда тело приблизилось к Земле, то высота тела равна 0, потенциальная энергия тоже равна 0, а максимальной будет являться кинетическая энергия тела. Вот здесь и просматривается превращение потенциальной энергии в кинетическую. То же самое можно сказать о движении тела наоборот, снизу вверх, когда тело бросают вертикально вверх.

Конечно, нужно отметить, что данный пример мы рассмотрели с учетом отсутствия сил трения, которые в реальности действуют в любой системе. Обратимся к формулам и посмотрим, как записывается закон сохранения механической энергии: .

Представьте себе, что тело в некоторой системе отсчета обладает кинетической энергией и потенциальной энергией. Если система замкнутая, то при каком-либо изменении произошло перераспределение, превращение одного вида энергии в другой, но полная энергия остается по своему значению той же самой. Представьте себе ситуацию, когда по горизонтальной дороге движется автомобиль. Водитель выключает мотор и продолжает движение уже с выключенным мотором. Что в этом случае происходит? В данном случае автомобиль обладает кинетической энергией. Но вы прекрасно знаете, что с течением времени автомобиль остановится. Куда девалась в этом случае энергия? Ведь потенциальная энергия тела в данном случае тоже не изменилась, она была какой-то постоянной величиной относительно Земли. Как произошло изменение энергии? В данном случае энергия пошла на преодоление сил трения. Если в системе встречается трение, то оно также влияет на энергию этой системы. Давайте посмотрим, как записывается в данном случае изменение энергии.

Изменяется энергия, и это изменение энергии определяется работой против силы трения. Определить работу мы можем с помощью формулы, которая известна из 7 класса: А = F.* S.

Итак, когда мы говорим об энергии и работе, то должны понимать, что каждый раз мы должны учитывать и то, что часть энергии расходуется на преодоление сил трения. Совершается работа по преодолению сил трения.

В заключение урока хотелось бы сказать, что работа и энергия по сути своей связанные величины через действующие силы.

Дополнительная задача 1 «О падении тела с некоторой высоты»

Задача 1

Тело находится на высоте 5 м от поверхности земли и начинает свободно падать. Определите скорость тела в момент соприкосновения с землей.

Дано: Решение :

Н = 5 м 1. ЕП = m* g*.H

V0 = 0 ; m * g * H =

_______ V2 = 2gH

VK - ? Ответ:

Рассмотрим закон сохранения энергии.

Рис. 1. Движение тела (задача 1)

В верхней точке тело обладает только потенциальной энергией: ЕП = m *g * H. Когда тело приблизится к земле, то высота тела над землей будет равна 0, а это означает, что потенциальная энергия у тела исчезла, она превратилась в кинетическую.

Согласно закону сохранения энергии можем записать: m * g * H = . Масса тела сокращается. Преобразуя указанное уравнение, получаем: V2 = 2gH .

Окончательный ответ будет: . Если подставить все значение, то получим: .

Дополнительная задача 2

Тело свободно падает с высоты Н. Определите, на какой высоте кинетическая энергия равна трети потенциальной.

Дано: Решение :

Н ЕП = m . g . H; ;

M.g.h = m.g.h + m.g.h

h - ? Ответ: h = H.

Рис. 2. К задаче 2

Когда тело находится на высоте Н, оно обладает потенциальной энергией, и только потенциальной. Эта энергия определяется формулой: ЕП = m * g * H. Это и будет полная энергия тела.

Когда тело начинает двигаться вниз, уменьшается потенциальная энергия, но вместе с тем нарастает кинетическая. На высоте, которую нужно определить, у тела уже будет некоторая скорость V. Для точки, соответствующей высоте h, кинетическая энергия имеет вид: . Потенциальная энергия на этой высоте будет обозначена следующим образом: .

По закону сохранения энергии у нас полная энергия сохраняется. Эта энергия ЕП = m * g * H остается величиной постоянной. Для точки h мы можем записать следующее соотношение: (по З.С.Э.).

Вспоминая, что кинетическая энергия по условию задачи составляет , можем записать следующее: m.g.Н = m.g.h + m.g.h.

Обратите внимание, масса сокращается, ускорение свободного падения сокращается, после несложных преобразований мы получаем, что высота, на которой такое соотношение выполняется, составляет h = H.

Ответ: h= 0,75H

Дополнительная задача 3

Два тела – брусок массой m1 и пластилиновый шарик массой m2 – движутся навстречу друг другу с одинаковыми скоростями. После столкновения пластилиновый шарик прилип к бруску, два тела продолжают движение вместе. Определить, какое количество энергии превратилось во внутреннюю энергию этих тел, с учетом того что масса бруска в 3 раза больше массы пластилинового шарика.

Дано: Решение :

m1 = 3. m2 m1.V1- m2.V2= (m1+m2).U; 3.m2V- m2.V= 4 m2.U2.V=4.U; .

Это означает, что скорость бруска и пластилинового шарика вместе будет в 2 раза меньше, чем скорость до соударения.

Следующий шаг – это .

.

В данном случае полная энергия – это сумма кинетических энергий двух тел. Тел, которые еще не соприкоснулись, не ударились. Что произошло потом, после соударения? Посмотрите на следующую запись: .

В левой части мы оставляем полную энергию, а в правой части мы должны записать кинетическую энергию тел после взаимодействия и учесть, что часть механической энергии превратилась в тепло Q .

Таким образом, имеем: . В итоге получаем ответ .

Обратите внимание: в результате такого взаимодействия большая часть энергии превращается в тепло, т.е. переходит во внутреннюю энергию.

Список дополнительной литературы:

А так ли хорошо знакомы вам законы сохранения? // Квант. - 1987. - № 5. - С. 32-33.
Городецкий Е.Е. Закон сохранения энергии // Квант. - 1988. - № 5. - С. 45-47.
Соловейчик И.А. Физика. Механика. Пособие для абитуриентов и старшеклассников. – СПб.: Агенство ИГРЕК, 1995. – С. 119-145.
Физика: Механика. 10 кл.: Учеб. для углубленного изучения физики / М.М. Балашов, А.И. Гомонова, А.Б. Долицкий и др.; Под ред. Г.Я. Мякишева. – М.: Дрофа, 2002. – C. 309-347.

Потенциальная энергия - это, скорее, абстрактная величина, ведь любой предмет, который имеет некоторую высоту над поверхностью Земли, уже будет обладать определенным количеством потенциальной энергии. Она рассчитывается путем умножения скорости свободного падения на высоту над Землей, а также на массу. Если же тело двигается, можно говорить о наличии кинетической энергии.

Формула и описание закона

Результат сложения кинетической и потенциальной энергии в закрытой от внешнего воздействия системе, части которой взаимодействуют благодаря силам упругости и тяготения, не изменяется - так звучит закон сохранения энергии в классической механике. Формула данного закона выглядит так: Ек1+Еп1=Ек2+Еп2. Здесь Ек1 является кинетической энергией определенного физического тела в конкретный момент времени, а Еп1 - потенциальной. То же самое верно и для Ек2 и Еп2, но уже в следующий временной промежуток. Но этот закон верен только в том случае, если система, в которой он действует, является замкнутой (или консервативной). Это говорит о том, что значение полной механической энергии не изменяется, когда на систему действуют лишь консервативные силы. Когда в действие вступают неконсервативные силы, часть энергии изменяется, принимая другие формы. Такие системы получили название диссипативных. Закон сохранения энергии работает, когда силы извне никак не действуют на тело.

Пример проявления закона

Одним из типичных примеров, иллюстрирующих описанный закон, служит проведение опыта с шариком из стали, который падает на плиту из этого же вещества или на стеклянную, отскакивая от нее примерно на ту же высоту, где он находился до момента падения. Данный эффект достигается за счет того, что когда предмет движется, энергия преобразуется несколько раз. Первоначально значение потенциальной энергии начинает стремиться к нулю, в то время как кинетическая увеличивается, но после столкновения она становится потенциальной энергией упругой деформации шара.

Это продолжается до момента полной остановки предмета, в который он начинает свое движение вверх за счет сил упругой деформации как плиты, так и упавшего предмета. Но при этом в дело вступает потенциальная энергия тяготения. Так как шарик при этом понимается примерно на ту же высоту, с которой он и упал, кинетическая энергия в нем одна и та же. Кроме этого, сумма всех энергий, действующих на движущийся предмет, остается одинаковой во время всего описанного процесса, подтверждая закон сохранения полной механической энергии.

Упругая деформация - что это?

Для того чтобы полностью понять приведенный пример, стоит более подробно разобраться с тем, что такое потенциальная энергия упругого тела - это понятие означает обладание упругостью, позволяющей при деформации всех частей данной системы вернуться в состояние покоя, совершая некоторую работу над телами, с которыми соприкасается физический объект. На работу сил упругости не влияет форма траектории движения, так как работа, совершаемая за счет них, зависит лишь от положения тела в начале и в конце движения.

Когда действуют внешние силы

Но закон сохранения не распространяется на реальные процессы, в которых участвует сила трения. В пример можно привести падающий на землю предмет. Во время столкновения кинетическая энергия и сила сопротивления возрастают. Этот процесс не вписывается в рамки механики, так как из-за возрастающего сопротивления повышается температура тела. Из вышесказанного следует вывод о том, что закон сохранения энергии в механике имеет серьезные ограничения.

Термодинамика

Первый закон термодинамики гласит: разность между количеством теплоты, накапливаемой благодаря работе, совершаемой над внешними объектами, равна изменению внутренней энергии данной неконсервативной термодинамической системы.

Но это утверждение чаще всего формулируется в другом виде: количество теплоты, полученное термодинамической системой, тратится на работу, совершаемую над объектами, находящимися вне системы, а также на изменение количества энергии внутри системы. Согласно данному закону, она не может исчезнуть, превращаясь из одной формы в другую. Из этого следует вывод о том, что создание машины, не потребляющей энергии (так называемого вечного двигателя), невозможно, так как система будет нуждаться в энергии извне. Но многие все же настойчиво пытались создать ее, не учитывая закон сохранения энергии.

Пример проявления закона сохранения в термодинамике

Опыты показывают, что термодинамические процессы невозможно обратить вспять. Примером тому может служить соприкосновение тел, имеющих различную температуру, при котором более нагретое будет отдавать тепло, а второе - принимать его. Обратный же процесс невозможен в принципе. Другим примером является переход газа из одной части сосуда в другую после открытия между ними перегородки, при условии что вторая часть пуста. Вещество в данном случае никогда не начнет движение в обратном направлении самопроизвольно. Из вышесказанного следует, что любая термодинамическая система стремится к состоянию покоя, при котором ее отдельные части находятся в равновесии и имеют одинаковую температуру и давление.

Гидродинамика

Применение закона сохранения в гидродинамических процессах выражается в принципе, описанном Бернулли. Он звучит так: сумма давления как кинестетической, так и потенциальной энергии на единицу объема одна и та же в любой отдельно взятой точке потока жидкости или газа. Это значит, что для измерения скорости потока достаточно измерить давление в двух точках. Делается это, как правило, манометром. Но закон Бернулли справедлив только в том случае, если рассматриваемая жидкость имеет вязкость, которая равна нулю. Для того чтобы описать течение реальных жидкостей, используется интеграл Бернулли, предполагающий добавление слагаемых, которые учитывают сопротивление.

Электродинамика

Во время электризации двух тел количество электронов в них остается неизменным, из-за чего положительный заряд одного тела равен по модулю отрицательному заряду другого. Таким образом, закон сохранения электрического заряда говорит о том, что в электрически изолированной системе сумма зарядов ее тел не изменяется. Это утверждение верно и тогда, когда заряженные частицы испытывают превращения. Таким образом, когда сталкиваются 2 нейтрально заряженные частицы, сумма их зарядов все равно остается равной нулю, так как вместе с отрицательно заряженной частицей появляется и положительно заряженная.

Заключение

Закон сохранения механической энергии, импульса и момента - фундаментальные физические законы, связанные с однородностью времени и его изотропностью. Они не ограничены рамками механики и применимы как к процессам, происходящим в космическом пространстве, так и к квантовым явлениям. Законы сохранения позволяют получать данные о различных механических процессах без их изучения при помощи уравнений движения. Если какой-то процесс в теории игнорирует данные принципы, то проводить опыты в таком случае бессмысленно, так как они будут нерезультативными.

Полная механическая энергия замкнутой системы тел остается неизменной


Закон сохранения энергии можно представить в виде

Если между телами действуют силы трения, то закон сохранения энергии видоизменяется. Изменение полной механической энергии равно работе сил трения

Рассмотрим свободное падение тела с некоторой высоты h1 . Тело еще не движется (допустим, мы его держим), скорость равна нулю, кинетическая энергия равна нулю. Потенциальная энергия максимальная, так как сейчас тело находится выше всего от земли, чем в состоянии 2 или 3.


В состоянии 2 тело обладает кинетической энергией (так как уже развило скорость), но при этом потенциальная энергия уменьшилась, так как h2 меньше h1. Часть потенциальной энергии перешло в кинетическую.

Состояние 3 - это состояние перед самой остановкой. Тело как бы только-только дотронулось до земли, при этом скорость максимальная. Тело обладает максимальной кинетической энергией. Потенциальная энергия равна нулю (тело находится на земле).

Полные механические энергии равны между собой , если пренебрегать силой сопротивления воздуха. Например, максимальная потенциальная энергия в состоянии 1 равна максимальной кинетической энергии в состоянии 3.

А куда потом исчезает кинетическая энергия? Исчезает бесследно? Опыт показывает, что механическое движение никогда не исчезает бесследно и никогда оно не возникает само собой. Во время торможения тела произошло нагревание поверхностей. В результате действия сил трения кинетическая энергия не исчезла, а превратилась во внутреннюю энергию теплового движения молекул.

При любых физических взаимодействиях энергия не возникает и не исчезает, а только превращается из одной формы в другую.

Главное запомнить

1) Суть закона сохранения энергии

Общая форма закона сохранения и превращения энергии имеет вид

Изучая тепловые процессы, мы будем рассматривать формулу
При исследовании тепловых процессов не рассматривается изменение механической энергии, то есть

Закон сохранения энергии, для любой замкнутой системы полная механическая энергия остается постоянной при любых взаимодействиях тел внутри системы. То есть энергия не возникает из ниоткуда и в никуда не исчезает. Она лишь переходит из одной формы в другую. Это справедливо для замкнутых систем, в которых энергия не поступает из вне, и не уходит из системы наружу.

Приближённым примером замкнутой системы может служить падение груза относительно большой массы, и малых размеров на землю с небольшой высоты. Допустим, что груз зафиксирован на некоторой высоте. При этом он обладает потенциальной энергией. Эта энергия зависит от его массы и высоты, на которой находится тело.

Формула 1 - Потенциальная энергия.


Кинетическая энергия груза при этом равна нулю, так как тело находится в состоянии покоя. То есть скорость тела равна нулю. При этом на систему не действуют никакие сторонние силы. В данном случае для нас важна только сила тяжести, действующая на груз.

Формула 2 - Кинетическая энергия.


Далее тело отпускают, и оно переходит в свободное падение. При этом его потенциальная энергия уменьшается. Так как уменьшается высота тела над землей. Также увеличивается кинетическая энергия. Вследствие того что тело начало двигаться и приобрело некоторую скорость. Груз движется к земле с ускорением свободного падения, а значит с прохождением некоторого расстояния, его кинетическая энергия увеличивается, вследствие увеличения скорости.

Рисунок 1 - Свободное падение тела.


Так как груз малыми размерами то сопротивление воздуха достаточно мало и энергия на его преодоление мала и ею можно пренебречь. Скорость движения тела не высока и на малом расстоянии не достигает момента, когда она уравновешивается трением о воздух и ускорение прекращается.

В момент столкновения с землей кинетическая энергия максимальна. Так как тело обладает максимальной для него скоростью. А потенциальная энергия равна нулю, так как тело достигло поверхности земли и высота равна нулю. То есть что происходит, максимальная потенциальная энергия в верхней точке, по мере движения переходит в кинетическую, которая в свою очередь достигает максимума в нижней точке. Но сумма всех энергий в системе за время движения остается постоянной. Насколько уменьшилась потенциальная энергия, настолько увеличилась кинетическая.

Формула 3 - Суммарная энергия системы.

Теперь если к грузу приделать парашют. Тем самым мы увеличим силу трения о воздух, и система перестает быть замкнутой. Как и раньше груз движется к земле, но его скорость остается постоянной. Так как сила тяжести уравновешивается силой трения о воздух поверхностью парашюта. Таким образом, потенциальная энергия уменьшается с уменьшением высоты. А кинетическая, на протяжении всего падения остается постоянной. Поскольку масса тела и его скорость неизменна.

Рисунок 2 - Замедленное падение тела.


Излишки потенциальной энергии, возникающие при уменьшении высоты тела, расходуются на преодоление сил трения о воздух. Тем самым снижая его конечную скорость снижения. То есть потенциальная энергия переходит в тепловую, нагревающую поверхность парашюта и окружающий воздух.

механической энергии. Превращения энергии

Поскольку движение и взаимодействие взаимосвязаны (взаимодействие определяет движение материальных объектов, а движение объектов, в свою очередь, влияет на их взаимодействие), то должна быть единая мера, характеризующая движение и взаимодействие материи.

Энергия и является единой скалярной количественной мерой различных форм движения и взаимодействия материи. Различным формам движения и взаимодействия соответствуют различные виды энергии: механическая, внутренняя, электромагнитная, ядерная и т.д. Простейшим видом энергии, соответствующим простейшей - механической - форме движения и взаимодействия материи, является механическая энергия.

Одним из наиболее важных законов всего естествознания является всеобщий закон сохранения энергии . Он утверждает, что энергия не возникает ниоткуда и не исчезает бесследно, а лишь переходит из одной формы в другую.

Закон сохранения механической энергии есть частный случай всеобщего закона сохранения энергии.

Полная механическая энергия материальной точки (частицы) и системы частиц складывается из двух частей. Первая составляющая энергии частицы обуславливается ее движением, называется кинетической энергией и вычисляется по формуле

где m - масса частицы, - ее скорость.

Кинетическая энергия частицы изменяется, если при движении частицы на нее действует сила (силы), совершающая работу.

В простейшем случае, когда сила постоянна по величине и по направлению, а траектория движения прямолинейна, то работаA , совершаемая этой силой при перемещении
, определяется по формуле

где s - пройденный путь, равный при прямолинейном движении модулю перемещения
,
- скалярное произведение векторови
, равное произведению модулей этих векторов на косинус угла
между ними.

Работа может быть положительной, если угол
острый (
90°), отрицательной, если угол
тупой (90°
180°), и может быть равна нулю если угол
прямой (
=90°).

Можно доказать, что изменение кинетической энергии
частицы при ее перемещении из точки 1 в точку 2 равно сумме работ, совершенных всеми силами, действующими на эту частицу, при данном перемещении:

, (6.13)

где
- кинетическая энергия частицы в начальной и в конечной точках,- работа, совершенная силой(i =1, 2, ... n ) при данном перемещении.

Кинетической энергией системы
изN частиц называется сумма кинетических энергий всех частиц системы. Ее изменение при любом изменении конфигурации системы, то есть произвольном перемещении частиц, равно суммарной работе
, совершенной всеми силами, действующими на частицы системы, при их перемещениях:

. (6.14)

Второй составляющей механической энергии является энергия взаимодействия, называемая потенциальной энергией. В механике понятие потенциальной энергии может быть введено не для любых взаимодействий, а лишь для определенного их класса.

Пусть в каждой точке пространства, где может находиться частица, на нее в результате взаимодействия с другими телами действует сила, зависящая только от координат x, y, z частицы и, возможно, от времени t :
. Тогда говорят, что частица находится в силовом поле взаимодействия с другими телами. Примеры: материальная точка, движущаяся в гравитационном поле Земли; электрон, движущийся в электростатическом поле неподвижного заряженного тела. В этих примерах сила, действующая на частицу, в каждой точке пространства от времени не зависит:
. Такие поля называются стационарными.

Если же, например, электрон будет находиться в электрическом поле конденсатора, напряжение между обкладками которого изменяется, то в каждой точке пространства сила будет зависеть и от времени:
. Такое поле называется нестационарным.

Сила, действующая на частицу, называется консервативной, а соответствующее поле – полем консервативной силы, если работа, совершаемая этой силой при перемещении частицы по произвольному замкнутому контуру, будет равна нулю.

К консервативным силам и соответствующим полям относятся сила всемирного тяготения и, в частности, сила тяжести (гравитационное поле), сила Кулона (электростатическое поле), сила упругости (поле сил, действующих на тело, прикрепленное к некоторой точке упругой связью).

Примерами неконсервативных сил являются сила трения, сила сопротивления среды движению тела.

Только для взаимодействий, которым соответствуют консервативные силы, может быть введено понятие потенциальной энергии.

Под потенциальной энергией
механической системы понимается величина, убыль которой (разность начального и конечного значений) при произвольном изменении конфигурации системы (изменении положения частиц в пространстве) равна работе
, совершаемой при этом всеми внутренними консервативными силами, действующими между частицами этой системы:

, (6.15)

где
- потенциальная энергия системы в начальной и конечной конфигурации.

Заметим, что убыль
равна с обратным знаком приращению (изменению)
потенциальной энергии и поэтому соотношение (6.15) можно записать в виде

. (6.16)

Такое определение потенциальной энергии системы частиц позволяет находить ее изменение при изменении конфигурации системы, но не само значение потенциальной энергии системы при заданной конфигурации. Поэтому во всех конкретных случаях уславливаются, при какой конфигурации системы (нулевой конфигурации) ее потенциальная энергия
принимается равной нулю (
). Тогда потенциальная энергия системы при любой ее конфигурации
, а из (6.15) следует, что

, (6.17)

то есть потенциальная энергия системы частиц некоторой конфигурации равна работе
, совершаемой внутренними консервативными силами при изменении конфигурации системы от данной до нулевой.

Потенциальная энергия тела, находящегося в однородном поле силы тяжести вблизи поверхности Земли, принимается равной нулю при нахождении тела на поверхности Земли. Тогда потенциальная энергия притяжения к Земле тела, находящегося на высоте h , равна работе силы тяжести
, совершаемой при перемещении тела с этой высоты на поверхность Земли, то есть на расстояниеh по вертикали:

Потенциальная энергия тела, прикрепленного к фиксированной точке упругой связью (пружиной), принимается равной нулю при недеформированной связи. Тогда потенциальная энергия упруго деформированной (растянутой или сжатой на величину
) пружины с коэффициентом жесткостиk равна

. (6.19)

Потенциальная энергия гравитационного взаимодействия материальных точек и электростатического взаимодействия точечных зарядов принимается равной нулю, если эти точки (заряды) удалены на бесконечное расстояние друг от друга. Поэтому энергия гравитационного взаимодействия материальных точек массами и
, находящихся на расстоянииr друг от друга, равна работе силы всемирного тяготения
, совершенной при изменении расстоянияx между точками от x=r до
:

. (6.20)

Из (6.20) следует, что потенциальная энергия гравитационного взаимодействия материальных точек при указанном выборе нулевой конфигурации (бесконечном удалении) оказывается отрицательной при размещении точек на конечном расстоянии друг от друга. Это связано с тем, что сила всемирного тяготения есть сила притяжения, и ее работа при удалении точек друг от друга отрицательна. Отрицательность потенциальной энергии означает, что при переходе этой системы из произвольной конфигурации в нулевую (при удалении точек с конечного расстояния на бесконечное) ее потенциальная энергия увеличивается.

Аналогично, потенциальная энергия электростатического взаимодействия точечных зарядов в вакууме равна

(6.21)

и отрицательна для притягивающихся разноименных зарядов (знаки иразличны) и положительна для отталкивающихся одноименных зарядов (знакииодинаковы).

Полной механической энергией системы (механической энергией системы)
называется сумма ее кинетической и потенциальной энергий

. (6.22)

Из (6.22) следует, что изменение полной механической энергии складывается из изменения ее кинетической и потенциальной энергии

Подставим в формулу (6.33) формулы (6.14) и (6.16). В формуле (6.14) общую работу
всех сил, действующих на точки системы, представим как сумму работы сил, внешних по отношению к рассматриваемой системе,
и работы внутренних сил, которая, в свою очередь, складывается из работы внутренних консервативных и неконсервативных сил,

:

После подстановки получим, что

Для замкнутой системы
0. Если система к тому же консервативна, то есть в ней действуют только внутренние консервативные силы, то и
=0. В этом случае уравнение (6.24) принимает вид
, а это означает, что

Уравнение (6.2) есть математическая запись закона сохранения механической энергии, который гласит: полная механическая энергия замкнутой консервативной системы постоянна, то есть не изменяется со временем.

Условие
0 выполняется, если в системе действуют и неконсервативные силы, но их работа равна нулю, как, например, при наличии сил трения покоя. В этом случае для замкнутой системы закон сохранения механической энергии также применим.

Отметим, что при
отдельные слагаемые механической энергии: кинетическая и потенциальная энергия, - не обязаны оставаться постоянными. Они могут изменяться, что сопровождается совершением работы консервативными внутренними силами, но изменения потенциальной и кинетической энергии
и
равны по модулю и противоположны по знаку. Например, за счет совершения внутренними консервативными силами работы над частицами системы ее кинетическая энергия возрастет, но при этом на равную величину уменьшится ее потенциальная энергия.

Если же в системе совершают работу неконсервативные силы, то это обязательно сопровождается взаимными превращениями механической и иных видов энергии. Так, совершение работы неконсервативными силами трения скольжения или сопротивления среды обязательно сопровождается выделением тепла, то есть переходом части механической энергии во внутреннюю (тепловую) энергию. Неконсервативные силы, работа которых приводит к переходу механической энергии в тепловую, называются диссипативными, а сам процесс перехода механической энергии в тепловую - диссипацией механической энергии.

Есть множество неконсервативных сил, работа которых, напротив, ведет к увеличению механической энергии системы за счет иных видов энергии. Например, в результате химических реакций происходит взрыв снаряда; при этом осколки получают прибавку механической (кинетической) энергии за счет работы неконсервативной силы давления расширяющихся газов - продуктов взрыва. В этом случае посредством совершения работы неконсервативных сил произошел переход химической энергии в механическую. Схема взаимных превращений энергии при совершении работы консервативными и неконсервативными силами представлена на рисунке 6.3.

Таким образом, работа есть количественная мера превращения одних видов энергии в другие. Работа консервативных сил равна количеству потенциальной энергии, перешедшей в кинетическую или наоборот (общая механическая энергия при этом не изменяется), работа неконсервативных сил равна количеству механической энергии, перешедшей в другие виды энергии или наоборот.

Рисунок 6.3 - Схема превращений энергии.

Всеобщий закон сохранения энергии фактически есть закон неуничтожимости движения в природе, а закон сохранения механической энергии - закон неуничтожимости механического движения при определенных условиях. Изменение же механической энергии при невыполнении этих условий не означает уничтожения движения или его появления ниоткуда, а свидетельствует о превращении одних форм движения и взаимодействия материи в другие.

Обратим внимание на отличие обозначений бесконечно малых величин. Например, dx обозначает бесконечно малое приращение координаты,
- скорости,dE – энергии, а бесконечно малую работу обозначают
. Это отличие имеет глубокий смысл. Координаты и скорость частицы, ее энергия и многие другие физические величины являются функциями состояния частицы (системы частиц), то есть определяются текущим состоянием частицы (системы частиц) и не зависят от того, какими были предшествующие состояния, и от того, каким способом частица (система) пришла в текущее состояние. Изменение такой величины можно представить как разность значений этой величины в конечном и начальном состояниях. Бесконечно малое изменение такой величины (функции состояния) называется полным дифференциалом и для величиныX обозначается dX .

Такие же величины, как работа или количество теплоты, характеризуют не состояние системы, а способ, которым был реализован переход из одного состояния системы в другое. Например, говорить о наличии работы у системы частиц в каком-то заданном состоянии бессмысленно, но можно говорить о работе, совершенной силами, действующими на систему, при ее переходе из одного состояния в другое. Таким образом, не имеет смысла говорить и о разности значений такой величины в конечном и начальном состояниях. Бесконечно малое количество величины Y , не являющейся функцией состояния, обозначается
.

Отличительным признаком функций состояния является то, что их изменения в процессах, в которых система, выйдя из исходного состояния, в него же и возвращается, равны нулю. Механическое состояние системы частиц задается их координатами и скоростями. Поэтому, если в результате некоторого процесса механическая система возвращается в исходное состояние, то координаты и скорости всех частиц системы принимают первоначальные значения. Механическая энергия, как величина, зависящая только от координат и скоростей частиц, также примет исходное значение, то есть не изменится. В то же время работа, совершенная силами, действующими на частицы, будет отлична от нуля, причем ее значение может быть разным в зависимости от вида траекторий, описанных частицами системы.

Похожие публикации