Отражение света. Законы отражения света

Большинство окружающих вас объектов: дома, деревья, ваши одноклассники и т. д. — не являются источниками света. Но вы их видите. Ответ на вопрос «Почему так?» вы найдете в этом параграфе.

Рис. 11.1. При отсутствии источника света невозможно ничего увидеть. Если есть источник света, мы видим не только сам источник, но и предметы, которые отражают свет, идущий от источника

Выясняем, почему мы видим тела, не являющиеся источниками света

Вы уже знаете, что в однородной прозрачной среде свет распространяется прямолинейно.

А что происходит, если на пути пучка света находится какое-то тело? Часть света может пройти сквозь тело, если оно прозрачное, часть поглотится, а часть обязательно отразится от тела. Некоторые отраженные лучи попадут нам в глаза, и мы увидим это тело (рис. 11.1).

Устанавливаем законы отражения света

Чтобы установить законы отражения света, воспользуемся специальным прибором — оптической шайбой*. В центре шайбы закрепим зеркало и направим на него узкий пучок света так, чтобы он давал на поверхности шайбы светлую полосу. Видим, что пучок света, отраженный от зеркала, тоже дает светлую полосу на поверхности шайбы (см. рис. 11.2).

Направление падающего пучка света зададим лучом СО (рис. 11.2). Этот луч называют падающим лучом. Направление отраженного пучка света зададим лучом OK. Этот луч называют отраженным, лучом.

Из точки O падения луча проведем перпендикуляр OB к поверхности зеркала. Обратим внимание на то, что падающий луч, отраженный луч и перпендикуляр лежат в одной плоскости, — в плоскости поверхности шайбы.

Угол α между падающим лучом и перпендикуляром, проведенным из точки падения, называют углом падения; угол β между отраженным лучом и данным перпендикуляром называют углом отражения.

Измерив углы α и β, можно убедиться, что они равны.

Если перемещать источник света по краю диска, угол падения светового пучка будет изменяться и соответственно будет изменяться угол отражения, причем каждый раз угол падения и угол отражения света будут равны (рис. 11.3). Итак, мы установили законы отражения света:

Рис. 11.3. С изменением угла падения света изменяется и угол отражения. Угол отражения всегда равен углу падения

Рис. 11.5. Демонстрация обратимости световых лучей: отраженный луч идет по пути падающего луча

рис. 11.6. Подходя к зеркалу, мы видим в нем своего «двойника». Конечно, никакого «двойника» там нет — мы видим в зеркале свое отражение

1. Луч падающий, луч отраженный и перпендикуляр к поверхности отражения, проведенный из точки падения луча, лежат в одной плоскости.

2. Угол отражения равен углу падения: β = α.

Законы отражения света установил древнегреческий ученый Евклид еще в III в. до н. э.

В каком направлении следует повернуть зеркало профессору, чтобы «солнечный зайчик» попал на мальчика (рис. 11.4)?

С помощью зеркала на оптической шайбе можно продемонстрировать также обратимость световых лучей: если падающий луч направить по пути отраженного, то отраженный луч пойдет по пути падающего (рис. 11.5).

Изучаем изображение в плоском зеркале

Рассмотрим, как создается изображение в плоском зеркале (рис. 11.6).

Пусть из точечного источника света S на поверхность плоского зеркала падает расходящийся пучок света. Из этого пучка выделим лучи SA, SB и SC. Используя законы отражения света, построим отраженные лучи ЛЛ Ъ BB 1 и CC 1 (рис. 11.7, а). Эти лучи пойдут расходящимся пучком. Если продлить их в противоположном направлении (за зеркало), все они пересекутся в одной точке — S 1 , расположенной за зеркалом.

Если часть отраженных от зеркала лучей попадет в ваш глаз, вам будет казаться, что отраженные лучи выходят из точки S 1 , хотя в действительности никакого источника света в точке S 1 нет. Поэтому точку S 1 называют мнимым изображением точки S. Плоское зеркало всегда дает мнимое изображение.

Выясним, как расположены предмет и его изображение относительно зеркала. Для этого обратимся к геометрии. Рассмотрим, например, луч SC, который падает на зеркало и отражается от него (рис. 11.7, б).

Из рисунка видим, что Δ SOC = Δ S 1 OC — прямоугольные треугольники, имеющие общую сторону CO и равные острые углы (так как по закону отражения света α = β). Из равенства треугольников имеем, что SO = S 1 O, то есть точка S и ее изображение S 1 симметричны относительно поверхности плоского зеркала.

То же можно сказать и об изображении протяженного предмета: предмет и его изображение симметричны относительно поверхности плоского зеркала.

Итак, нами установлены общие характеристики изображений в плоских зеркалах.

1. Плоское зеркало дает мнимое изображение предмета.

2. Изображение предмета в плоском зеркале и собственно предмет симметричны относительно поверхности зеркала, и это означает:

1) изображение предмета равно по размеру самому предмету;

2) изображение предмета расположено на том же расстоянии от поверхности зеркала, что и сам предмет;

3) отрезок, соединяющий точку на предмете и соответствующую ей точку на изображении, перпендикулярен поверхности зеркала.

Различаем зеркальное и рассеянное отражение света

Вечером, когда в комнате горит свет, мы можем видеть свое изображение в оконном стекле. Но изображение исчезает, если задернуть шторы: на ткани мы своего изображения не увидим. А почему? Ответ на этот вопрос связан по меньшей мере с двумя физическими явлениями.

Первое такое физическое явление — отражение света. Чтобы появилось изображение, свет должен отразиться от поверхности зеркально: после зеркального отражения света, идущего от точечного источника S, продолжения отраженных лучей пересекутся в одной точке S 1 , которая и будет изображением точки S (рис. 11.8, а). Такое отражение возможно только от очень гладких поверхностей. Их так и называют — зеркальные поверхности. Кроме обычного зеркала примерами зеркальных поверхностей являются стекло, полированная мебель, спокойная гладь воды и т. п. (рис. 11.8, б, в).

Если свет отражается от шероховатой поверхности, такое отражение называют рассеянным (диффузным) (рис. 11.9). В этом случае отраженные лучи распространяются в разных направлениях (именно поэтому мы видим освещенный предмет с любой стороны). Понятно, что поверхностей, рассеивающих свет, намного больше, чем зеркальных.

Посмотрите вокруг и назовите не менее десяти поверхностей, отражающих свет рассеянно.

Рис. 11.8. Зеркальное отражение света — это отражение света от гладкой поверхности

Рис. 11.9. Рассеянное (диффузное) отражение света — это отражение света от шероховатой поверхности

Второе физическое явление, влияющее на возможность видеть изображение, — это поглощение света. Ведь свет не только отражается от физических тел, но и поглощается ими. Лучшие отражатели света — зеркала: они могут отражать до 95 % падающего света. Хорошими отражателями света являются тела белого цвета, а вот черная поверхность поглощает практически весь свет, падающий на нее.

Когда осенью выпадает снег, ночи становятся намного светлее. Почему? Учимся решать задачи

Задача. На рис. 1 схематически изображены предмет ВС и зеркало NM. Найдите графически участок, из которого изображение предмета ВС видно полностью.

Анализ физической проблемы. Чтобы видеть изображение некоторой точки предмета в зеркале, необходимо, чтобы в глаз наблюдателя отразилась хотя бы часть лучей, падающих из этой точки на зеркало. Понятно, что если в глаз отразятся лучи, исходящие из крайних точек предмета, то в глаз отразятся и лучи, исходящие из всех точек предмета.

Решение, анализ результатов

1. Построим точку B 1 — изображение точки В в плоском зеркале (рис. 2, а). Область, ограниченная поверхностью зеркала и лучами, отраженными от крайних точек зеркала, и будет той областью, из которой видно изображение B 1 точки В в зеркале.

2. Аналогично построив изображение С 1 точки С, определим область ее видения в зеркале (рис. 2, б).

3. Видеть изображение всего предмета наблюдатель может только в том случае, если в его глаз попадают лучи, которые дают оба изображения — B 1 и С 1 (рис. 2, в). Значит, участок, выделенный на рис. 2, в оранжевым, и есть тот участок, из которого изображение предмета видно полностью.

Проанализируйте полученный результат, еще раз рассмотрите рис. 2 к задаче и предложите более простой способ найти область видения предмета в плоском зеркале. Проверьте свои предположения, построив область видения нескольких предметов двумя способами.

Подводим итоги

Все видимые тела отражают свет. При отражении света выполняются два закона отражения света: 1) луч падающий, луч отраженный и перпендикуляр к поверхности отражения, проведенный из точки падения луча, лежат в одной плоскости; 2) угол отражения равен углу падения.

Изображение предмета в плоском зеркале мнимое, равное по размеру самому предмету и расположено на том же расстоянии от зеркала, что и сам предмет.

Различают зеркальное и рассеянное отражения света. В случае зеркального отражения мы можем видеть мнимое изображение предмета в отражающей поверхности; в случае рассеянного отражения изображение не возникает.


Контрольные вопросы

1. Почему мы видим окружающие тела? 2. Какой угол называют углом падения? углом отражения? 3. Сформулируйте законы отражения света. 4. С помощью какого прибора можно удостовериться в справедливости законов отражения света? 5. В чем состоит свойство обратимости световых лучей? 6. В каком случае изображение называют мнимым? 7. Охарактеризуйте изображение предмета в плоском зеркале. 8. Чем рассеянное отражение света отличается от зеркального?

Упражнение № 11

1. Девочка стоит на расстоянии 1,5 м от плоского зеркала. На каком расстоянии от девочки находится ее отражение? Охарактеризуйте его.

2. Водитель автомобиля, глянув в зеркало заднего вида, увидел пассажира, сидящего на заднем сиденье. Может ли пассажир в этот момент, глядя в то же зеркало, увидеть водителя?

3. Перенесите рис. 1 в тетрадь, для каждого случая постройте падающий (или отраженный) луч. Обозначьте углы падения и отражения.

4. Угол между падающим и отраженным лучами равен 80°. Чему равен угол падения луча?

5. Предмет находился на расстоянии 30 см от плоского зеркала. Затем предмет переместили на 10 см от зеркала в направлении, перпендикулярном поверхности зеркала, и на 15 см — параллельно ей. Каким было расстояние между предметом и его отражением? Каким оно стало?

6. Вы движетесь к зеркальной витрине со скоростью 4 км/ч. С какой скоростью приближается к вам ваше отражение? На сколько сократится расстояние между вами и вашим отражением, когда вы пройдете 2 м?

7. Солнечный луч отражается от поверхности озера. Угол между падающим лучом и горизонтом в два раза больше, чем угол между падающим и отраженным лучами. Чему равен угол падения луча?

8. Девочка смотрит в зеркало, висящее на стене под небольшим углом (рис. 2).

1) Постройте отражение девочки в зеркале.

2) Найдите графически, какую часть своего тела видит девочка; область, из которой девочка видит себя полностью.

3) Какие изменения будут наблюдаться, если зеркало постепенно закрывать непрозрачным экраном?

9. Ночью в свете фар автомобиля лужа на асфальте кажется водителю темным пятном на более светлом фоне дороги. Почему?

10. На рис. 3 показан ход лучей в перископе — устройстве, действие которого основано на прямолинейном распространении света. Объясните, как работает это устройство. Воспользуйтесь дополнительными источниками информации и узнайте, где его применяют.


ЛАБОРАТОРНАЯ РАБОТА № 3

Тема. Исследование отражения света с помощью плоского зеркала.

Цель: экспериментально проверить законы отражения света.

оборудование: источник света (свеча или электрическая лампа на подставке), плоское зеркало, экран со щелью, несколько чистых белых листов бумаги, линейка, транспортир, карандаш.

указания к работе

подготовка к эксперименту

1. Перед выполнением работы вспомните: 1) требования безопасности при работе со стеклянными предметами; 2) законы отражения света.

2. Соберите экспериментальную установку (рис. 1). Для этого:

1) установите экран со щелью на белом листе бумаги;

2) перемещая источник света, получите на бумаге полоску света;

3) установите плоское зеркало под некоторым углом к полоске света и перпендикулярно листу бумаги так, чтобы отраженный пучок света тоже давал на бумаге хорошо заметную полоску.

Эксперимент

Строго соблюдайте инструкцию по безопасности (см. форзац учебника).

1. Хорошо заточенным карандашом начертите на бумаге линию вдоль зеркала.

2. Поставьте на листе бумаги три точки: первую — посреди падающего пучка света, вторую — посреди отраженного пучка света, третью — в месте падения светового пучка на зеркало (рис. 2).

3. Повторите описанные действия еще несколько раз (на разных листах бумаги), устанавливая зеркало под разными углами к падающему пучку света.

4. Изменив угол между зеркалом и листом бумаги, убедитесь, что в этом случае вы не увидите отраженного пучка света.

Обработка результатов эксперимента

Для каждого опыта:

1) постройте луч, падающий на зеркало, и отраженный луч;

2) через точку падения луча проведите перпендикуляр к линии, проведенной вдоль зеркала;

3) обозначьте и измерьте угол падения (α) и угол отражения (β) света. Результаты измерений занесите в таблицу.

Анализ эксперимента и его результатов

Проанализируйте эксперимент и его результаты. Сделайте вывод, в котором укажите: 1) какое соотношение между углом падения светового луча и углом его отражения вы установили; 2) оказались ли результаты опытов абсолютно точными, а если нет, то в чем причины погрешности.

творческое задание

Используя рис. 3, продумайте и запишите план проведения эксперимента по определению высоты комнаты с помощью плоского зеркала; укажите необходимое оборудование.

По возможности проведите эксперимент.

Задание «со звездочкой»

Датируемой примерно 300 до н. э.

Законы отражения. Формулы Френеля

Закон отражения света - устанавливает изменение направления хода светового луча в результате встречи с отражающей (зеркальной) поверхностью: падающий и отраженный лучи лежат в одной плоскости с нормалью к отражающей поверхности в точке падения, и эта нормаль делит угол между лучами на две равные части. Широко распространённая, но менее точная формулировка «угол падения равен углу отражения» не указывает точное направление отражения луча. Тем не менее, выглядит это следующим образом:

Этот закон является следствием применения принципа Ферма к отражающей поверхности и, как и все законы геометрической оптики, выводится из волновой оптики . Закон справедлив не только для идеально отражающих поверхностей, но и для границы двух сред, частично отражающей свет. В этом случае, равно как и закон преломления света , он ничего не утверждает об интенсивности отражённого света.

Механизм отражения

При попадании электромагнитной волны на проводящую поверхность возникает ток, электромагнитное поле которого стремится компенсировать это воздействие, что приводит к практически полному отражению света.

Виды отражения

Отражение света может быть зеркальным (то есть таким, как наблюдается при использовании зеркал) или диффузным (в этом случае при отражении не сохраняется путь лучей от объекта, а только энергетическая составляющая светового потока) в зависимости от природы поверхности.

Зеркальное О. с. отличает определённая связь положений падающего и отражённого лучей: 1) отражённый луч лежит в плоскости, проходящей через падающий луч и нормаль к отражающей поверхности; 2) угол отражения равен углу падения j. Интенсивность отражённого света (характеризуемая отражения коэффициентом) зависит от j и поляризации падающего пучка лучей (см. Поляризация света), а также от соотношения преломления показателей n2 и n1 2-й и 1-й сред. Количественно эту зависимость (для отражающей среды - диэлектрика) выражают формулы Френеля . Из них, в частности, следует, что при падении света по нормали к поверхности коэффициент отражения не зависит от поляризации падающего пучка и равен

(n2 - n1)²/(n2 + n1)²

В очень важном частном случае нормального падения из воздуха или стекла на границу их раздела (nвозд " 1,0; nст = 1,5) он составляет " 4 %.

Характер поляризации отражённого света меняется с изменением j и различен для компонент падающего света, поляризованных параллельно (р-компонента) и перпендикулярно (s-компонента) плоскости падения. Под плоскостью поляризации при этом понимается, как обычно, плоскость колебаний электрического вектора световой волны. При углах j, равных так называемому углу Брюстера (см. Брюстера закон), отражённый свет становится полностью поляризованным перпендикулярно плоскости падения (р-составляющая падающего света полностью преломляется в отражающую среду; если эта среда сильно поглощает свет, то преломленная р-составляющая проходит в среде очень малый путь). Эту особенность зеркального О. с. используют в ряде поляризационных приборов. При j, больших угла Брюстера, коэффициент отражения от диэлектриков растет с увеличением j, стремясь в пределе к 1, независимо от поляризации падающего света. При зеркальном О. с., как явствует из формул Френеля, фаза отражённого света в общем случае скачкообразно изменяется. Если j = 0 (свет падает нормально к границе раздела), то при n2 > n1 фаза отражённой волны сдвигается на p, при n2 < n1 - остаётся неизменной. Сдвиг фазы при О. с. в случае j ¹ 0 может быть различен для р- и s-составляющих падающего света в зависимости от того, больше или меньше j угла Брюстера, а также от соотношения n2 и n1. О. с. от поверхности оптически менее плотной среды (n2 < n1) при sin j ³ n2 / n1 является полным внутренним отражением, при котором вся энергия падающего пучка лучей возвращается в 1-ю среду. Зеркальное О. с. от поверхностей сильно отражающих сред (например, металлов) описывается формулами, подобными формулам Френеля, с тем (правда, весьма существенным) изменением, что n2 становится комплексной величиной, мнимая часть которой характеризует поглощение падающего света.

Поглощение в отражающей среде приводит к отсутствию угла Брюстера и более высоким (в сравнении с диэлектриками) значениям коэффициента отражения - даже при нормальном падении он может превышать 90% (именно этим объясняется широкое применение гладких металлических и металлизированных поверхностей в зеркалах).Отличаются и поляризационные характеристики отражённых от поглощающей среды световых волн (вследствие иных сдвигов фаз р- и s-составляющих падающих волн). Характер поляризации отражённого света настолько чувствителен к параметрам отражающей среды, что на этом явлении основаны многочисленные оптические методы исследования металлов (см. Магнитооптика, Металлооптика).

Диффузное О. с. - его рассеивание неровной поверхностью 2-й среды по всем возможным направлениям. Пространственное распределение отражённого потока излучения и его интенсивность различны в разных конкретных случаях и определяются соотношением между l и размерами неровностей, распределением неровностей по поверхности, условиями освещения, свойствами отражающей среды. Предельный, строго не выполняющийся в природе случай пространственного распределения диффузно отражённого света описывается Ламберта законом. Диффузное О. с. наблюдается также от сред, внутренняя структура которых неоднородна, что приводит к рассеянию света в объёме среды и возвращению части его в 1-ю среду. Закономерности диффузного О. с. от таких сред определяются характером процессов однократного и многократного рассеяния света в них. И поглощение, и рассеяние света могут обнаруживать сильную зависимость от l. Результатом этого является изменение спектрального состава диффузно отражённого света, что (при освещении белым светом)визуально воспринимается как окраска тел.

Полное внутреннее отражение

При увеличении угла падения i , угол преломления тоже увеличивается, при этом интенсивность отраженного луча растет, а преломленного - падает (их сумма равна интенсивности падающего луча). При каком-то значении i = i k угол r = π / 2 , интенсивность преломленного луча станет равной нулю, весь свет отразится. При дальнейшем увеличении угла i > i k преломленного луча не будет, происходит полное отражение света.

Значение критического угла падения, при котором начинается полное отражение найдем, положим в законе преломления r = π / 2 , тогда sinr = 1 , значит:

sini k = n 2 / n 1

Диффузное рассеяние света

θ i = θ r .
Угол падения равен углу отражения

Принцип действия уголкового отражателя


Wikimedia Foundation . 2010 .

На границе раздела двух различных сред, если эта граница раздела значительно превышает длину волны, происходит изменение направления распространения света: часть световой энергии возвращается в первую среду, то есть отражается , а часть проникает во вторую среду и при этом преломляется . Луч АО носит название падающий луч , а луч OD – отраженный луч (см. рис. 1.3). Взаимное расположение этих лучей определяют законы отражения и преломления света .

Рис. 1.3. Отражение и преломление света.

Угол α между падающим лучом и перпендикуляром к границе раздела, восстановленным к поверхности в точке падения луча, носит название угол падения .

Угол γ между отражённым лучом и тем же перпендикуляром, носит название угол отражения .

Каждая среда в определённой степени (то есть по своему) отражает и поглощает световое излучение. Величина, которая характеризует отражательную способность поверхности вещества, называется коэффициент отражения . Коэффициент отражения показывает, какую часть принесённой излучением на поверхность тела энергии составляет энергия, унесённая от этой поверхности отражённым излучением. Этот коэффициент зависит от многих причин, например, от состава излучения и от угла падения. Свет полностью отражается от тонкой плёнки серебра или жидкой ртути, нанесённой на лист стекла.

Законы отражения света

Законы отражения света были найдены экспериментально ещё в 3 веке до нашей эры древнегреческим учёным Евклидом. Также эти законы могут быть получены как следствие принципа Гюйгенса, согласно которому каждая точка среды, до которой дошло возмущение, является источником вторичных волн. Волновая поверхность (фронт волны) в следующий момент представляет собой касательную поверхность ко всем вторичным волнам. Принцип Гюйгенса является чисто геометрическим.

На гладкую отражательную поверхность КМ (рис. 1.4) падает плоская волна, то есть волна, волновые поверхности которой представляют собой полоски.

Рис. 1.4. Построение Гюйгенса.

А 1 А и В 1 В – лучи падающей волны, АС – волновая поверхность этой волны (или фронт волны).

Пока фронт волны из точки С переместится за время t в точку В, из точки А распространится вторичная волна по полусфере на расстояние AD = CB, так как AD = vt и CB = vt, где v – скорость распространения волны.

Волновая поверхность отражённой волны – это прямая BD, касательная к полусферам. Дальше волновая поверхность будет двигаться параллельно самой себе по направлению отражённых лучей АА 2 и ВВ 2 .

Прямоугольные треугольники ΔАСВ и ΔADB имеют общую гипотенузу АВ и равные катеты AD = CB. Следовательно, они равны.

Углы САВ = = α и DBA = = γ равны, потому что это углы со взаимно перпендикулярными сторонами. А из равенства треугольников следует, что α = γ .

Из построения Гюйгенса также следует, что падающий и отражённый лучи лежат в одной плоскости с перпендикуляром к поверхности, восстановленным в точке падения луча.

Законы отражения справедливы при обратном направлении хода световых лучей. В следствие обратимости хода световых лучей имеем, что луч, распространяющийся по пути отражённого, отражается по пути падающего.

Большинство тел лишь отражают падающее на них излучение, не являясь при этом источником света. Освещённые предметы видны со всех сторон, так как от их поверхности свет отражается в разных направлениях, рассеиваясь. Это явление называется диффузное отражение или рассеянное отражение . Диффузное отражение света (рис. 1.5) происходит от всех шероховатых поверхностей. Для определения хода отражённого луча такой поверхности в точке падения луча проводится плоскость, касательная к поверхности, и по отношению к этой плоскости строятся углы падения и отражения.

Рис. 1.5. Диффузное отражение света.

Например, 85% белого света отражается от поверхности снега, 75% — от белой бумаги, 0,5% — от чёрного бархата. Диффузное отражение света не вызывает неприятных ощущений в глазу человека, в отличие от зеркального.

– это когда падающие на гладкую поверхность под определённым углом лучи света отражаются преимущественно в одном направлении (рис. 1.6). Отражающая поверхность в этом случае называется зеркало (или зеркальная поверхность ). Зеркальные поверхности можно считать оптически гладкими, если размеры неровностей и неоднородностей на них не превышают длины световой волны (меньше 1 мкм). Для таких поверхностей выполняется закон отражения света.

Рис. 1.6. Зеркальное отражение света.

Плоское зеркало – это зеркало, отражающая поверхность которого представляет собой плоскость. Плоское зеркало даёт возможность видеть предметы, находящиеся перед ним, причём эти предметы кажутся расположенными за зеркальной плоскостью. В геометрической оптике каждая точка источника света S считается центром расходящегося пучка лучей (рис. 1.7). Такой пучок лучей называется гомоцентрическим . Изображением точки S в оптическом устройстве называется центр S’ гомоцентрического отражённого и преломлённого пучка лучей в различных средах. Если свет, рассеянный поверхностями различных тел, попадает на плоское зеркало, а затем, отражаясь от него, падает в глаз наблюдателя, то в зеркале видны изображения этих тел.

Рис. 1.7. Изображение, возникающее с помощью плоского зеркала.

Изображение S’ называется действительным, если в точке S’ пересекаются сами отражённые (преломлённые) лучи пучка. Изображение S’ называется мнимым, если в ней пересекаются не сами отражённые (преломлённые) лучи, а их продолжения. Световая энергия в эту точку не поступает. На рис. 1.7 представлено изображение светящейся точки S, возникающее с помощью плоского зеркала.

Луч SO падает на зеркало КМ под углом 0°, следовательно, угол отражения равен 0°, и данный луч после отражения идёт по пути OS. Из всего множества попадающих из точки S лучей на плоское зеркало выделим луч SO 1 .

Луч SO 1 падает на зеркало под углом α и отражается под углом γ (α = γ ). Если продолжить отражённые лучи за зеркало, то они сойдутся в точке S 1 , которая является мнимым изображением точки S в плоском зеркале. Таким образом, человеку кажется, что лучи выходят из точки S 1 , хотя на самом деле лучей, выходящих их этой точки и попадающих в глаз, не существует. Изображение точки S 1 расположено симметрично самой светящейся точке S относительно зеркала КМ. Докажем это.

Луч SB, падающий на зеркало под углом 2 (рис. 1.8), согласно закону отражения света отражается под углом 1 = 2.

Рис. 1.8. Отражение от плоского зеркала.

Из рис. 1.8 видно, что углы 1 и 5 равны – как вертикальные. Суммы углов 2 + 3 = 5 + 4 = 90°. Следовательно, углы 3 = 4 и 2 = 5.

Прямоугольные треугольники ΔSOB и ΔS 1 OB имеют общий катет ОВ и равные острые углы 3 и 4, следовательно, эти треугольники равны по стороне и двум прилежащим к катету углам. Это означает, что SO = OS 1 , то есть точка S 1 расположена симметрично точке S относительно зеркала.

Для того чтобы найти изображение предмета АВ в плоском зеркале, достаточно опустить перпендикуляры из крайних точек предмета на зеркало и, продолжив их за пределы зеркала, отложить за ним расстояние, равное расстоянию от зеркала до крайней точки предмета (рис. 1.9). Это изображение будет мнимым и в натуральную величину. Размеры и взаимное расположение предметов сохраняются, но при этом в зеркале левая и правая стороны у изображения меняются местами по сравнению с самим предметом. Параллельность падающих на плоское зеркало световых лучей после отражения также не нарушается.

Рис. 1.9. Изображение предмета в плоском зеркале.

В технике часто применяют зеркала со сложной кривой отражающей поверхностью, например, сферические зеркала. Сферическое зеркало – это поверхность тела, имеющая форму сферического сегмента и зеркально отражающая свет. Параллельность лучей при отражении от таких поверхностей нарушается. Зеркало называют вогнутым , если лучи отражаются от внутренней поверхности сферического сегмента. Параллельные световые лучи после отражения от такой поверхности собираются в одну точку, поэтому вогнутое зеркало называют собирающим . Если лучи отражаются от наружной поверхности зеркала, то оно будет выпуклым . Параллельные световые лучи рассеиваются в разные стороны, поэтому выпуклое зеркало называют рассеивающим .

Свет является важной составляющей нашей жизни. Без него невозможна жизнь на нашей планете. При этом многие явления, которые связаны со светом, сегодня активно используются в разнообразных сферах человеческой деятельности, начиная от производства электротехнических приборов до космических аппаратов. Одним из основополагающих явлений в физике является отражение света.

Отражение света

Закон отражения света изучается еще в школе. Что следует знать о нем, а также много еще полезной информации сможет рассказать вам наша статья.

Основы знаний о свете

Как правило, физические аксиомы являются одними из наиболее понятных, поскольку они имеют наглядное проявление, которые можно легко пронаблюдать в домашних условиях. Закон отражения света подразумевает ситуацию, когда у световых лучей происходит смена направления при столкновении с различными поверхностями.

Обратите внимание! Граница преломления значительно увеличивает такой параметр, как длина волны.

В ходе преломления лучей часть их энергии возвратятся обратно в первичную среду. При проникновении части лучей в иную среду наблюдается их преломление.
Чтобы разбираться во всех этих физических явлениях, необходимо знать соответствующую терминологию:

  • поток световой энергии в физике определяется как падающий при попадании на границу раздела двух веществ;
  • часть энергии света, которая в данной ситуации возвращается в первичную среду, называется отраженной;

Обратите внимание! Существует несколько формулировок правила отражения. Как вы его не сформулируйте, но он все равно будет описывать взаимное расположение отраженных и падающих лучей.

  • угол падения. Здесь подразумевается угол, который формируется между перпендикулярной линией границы сред и падающим на нее светом. Он определяется в точке падения луча;

Углы луча

  • угол отражения. Он формируется между отраженным лучом и перпендикулярной линией, которая была восстановлена в точке его падения.

Кроме этого необходимо знать, что свет может распространяться в однородной среде исключительно прямолинейно.

Обратите внимание! Различные среды могут по-разному отражать и поглощать излучение света.

Отсюда выходит коэффициент отражения. Это величина, которая характеризует отражательную способность предметов и веществ. Он означает, сколько излучения принесенного световым потоком на поверхность среды составит та энергия, которая будет отражена от нее. Данный коэффициент зависит от целого ряда факторов, среди которых наибольшее значение имеют состав излучения и угол падения.
Полное отражение светового потока наблюдается тогда, когда луч падает на вещества и предметы, обладающие отражающей поверхностью. К примеру, отражение луча можно наблюдать при попадании его на стекло, жидкую ртуть или серебро.

Небольшой исторический экскурс

Законы преломления и отражения света были сформированы и систематизированы еще в ІІІ в. до н. э. Их разработал Евклид.

Все законы (преломления и отражения), которые касаются данного физического явления, были установлены экспериментальным путем и легко могут подтвердиться геометрическим принципом Гюйгенса. По этому принципу любая точка среды, до которой может дойти возмущение, выступает в роли источника вторичных волн.
Рассмотрим существующие на сегодняшний день законы более детально.

Законы – основа всего

Закон отражения светового потока определяется как физическое явление, в ходе которого свет, направляющийся из одной среды в другую, на их разделе будет частично возвращен обратно.

Отражение света на границе раздела

Зрительный анализатор человека наблюдает свет в момент, когда луч, идущий от своего источника, попадает в глазное яблоко. В ситуации, когда тело не выступает в роли источника, зрительный анализатор может воспринимать лучи от иного источника, которые отражаются от тела. При этом световое излучение, падающее на поверхность объекта, может изменить направление своего дальнейшего распространения. В результате этого тело, которое отражает свет, будет выступать в роли его источника. При отражении часть потока будет возвращаться в первую среду, из которой он первоначально направлялся. Здесь тело, которое отразит его, станет источником уже отраженного потока.
Существует несколько законов для данного физического явления:

  • первый закон гласит: отражающий и падающий луч, вместе с перпендикулярной линией, возникающей на границе раздела сред, а также в восстановленной точке падения светового потока, должны располагаться в одной плоскости;

Обратите внимание! Здесь подразумевается, что на отражательную поверхность предмета или вещества падает плоская волна. Ее волновые поверхности являются полосками.

Первый и второй закон

  • второй закон. Его формулировка имеет следующий вид: угол отражения светового потока будет равен углу падения. Это связано с тем, что они обладают взаимно перпендикулярными сторонами. Беря во внимание принципы равенства треугольников, становится понятным, откуда берется это равенство. Используя данные принципы можно легко доказать то, что эти углы находятся в одной плоскости с проведенной перпендикулярной линией, которая была восстановлена на границе разделения двух веществ в точке падения светового луча.

Эти два закона в оптической физике являются основными. При этом они справедливы и для луча, имеющего обратный ход. В результате обратимости энергии луча, поток, распространяющийся по пути ранее отраженного, будет отражаться аналогично пути падающего.

Закон отражения на практике

Проверить исполнение данного закона можно на практике. Для этого необходимо направить тонкий луч на любую отражающую поверхность. В этих целях отлично подойдет лазерная указка и обычное зеркало.

Действие закона на практике

Направляем лазерную указку на зеркало. В результате этого лазерный луч отразится от зеркала и распространится дальше в заданном направлении. При этом углы падающего и отраженного луча будут равны даже при обычном взгляде на них.

Обратите внимание! Свет от таких поверхностей будет отражаться под тупым углом и дальше распространяться по низкой траектории, которая расположена достаточно близко к поверхности. А вот луч, который будет падать практически отвесно, отразится под острым углом. При этом его дальнейший путь будет практически аналогичным падающему.

Как видим, ключевым моментом данного правила является тот факт, что углы необходимо отчитывать от перпендикуляра к поверхности в месте падения светового потока.

Обратите внимание! Этому закону подчиняется не только свет, но и любые виды электромагнитных волн (СВЧ, радио-, рентгеновские волны и т.п).

Особенности диффузного отражения

Многие предметы могут только отражать падающее на их поверхность световое излучение. Отлично освещенные объекты хорошо видны с разных сторон, так как их поверхность отражает и рассеивает свет в разных направлениях.

Диффузное отражение

Такое явление называется рассеянным (диффузным) отражением. Это явление образуется при попадании излучения на различные шероховатые поверхности. Благодаря ему мы имеем возможность различать объекты, которые не имеют способности испускать свет. Если рассеивание светового излучения будет равно нулю, то мы не сможем увидеть эти предметы.

Обратите внимание! Диффузное отражение не вызывает у человека дискомфорта.

Отсутствие дискомфорта объясняется тем, что не весь свет, согласно вышеописанному правилу, возвращается в первичную среду. Причем этот параметр у разных поверхностей будет различным:

  • у снега – отражается примерно 85% излучения;
  • у белой бумаги — 75%;
  • у черного цвета и велюра - 0,5%.

Если же отражение идет от шероховатых поверхностей, то свет будет направляться по отношению друг к другу хаотично.

Особенности зеркального отображения

Зеркальное отражение светового излучения отличается от ранее описанных ситуаций. Это связано с тем, что в результате падения потока на гладкую поверхность при определенном угле они будут отражаться в одном направлении.

Зеркальное отражение

Это явление можно легко воспроизвести, используя обычное зеркало. При направлении зеркала на солнечные лучи, оно будет выступать в роли отличной отражающей поверхности.

Обратите внимание! К зеркальным поверхностям можно отнести целый ряд тел. К примеру, в эту группу всходят все гладкие оптические объекты. Но такой параметр, как размеры неровностей и неоднородностей у этих объектов будут составлять менее 1 мкм. Величина длины волны света составляет примерно 1 мкм.

Все такие зеркальные отражающие поверхности подчиняются ранее описанным законам.

Использование закона в технике

На сегодняшний день в технике достаточно часто применяются зеркала или зеркальные объекты, имеющие изогнутую отражающую поверхность. Это так называемые сферические зеркала.
Подобные объекты представляют собой тела, которые имеют форму сферического сегмента. Для таких поверхностей характерно нарушение параллельности лучей.
На данный момент существуют два типа сферических зеркал:

  • вогнутые. Они способны отражать световое излучение от внутренней поверхности своего сегмента сферы. При отражении лучи собираются здесь в одной точке. Поэтому их часто еще называют «собирающими»;

Вогнутое зеркало

  • выпуклые. Для таких зеркал характерно отражение излучения от наружной поверхности. В ходе этого происходит рассеивание в стороны. По этой причине такие объекты получили название «рассеивающие».

Выпуклое зеркало

При этом существует несколько вариантов поведения лучей:

  • паление почти параллельно поверхности. В данной ситуации он лишь немного касается поверхности, а отражается под очень тупым углом. Далее он идет по достаточно низкой траектории;
  • при ответном падении, лучи отбиваются под острым углом. При этом, как мы говорили выше, отраженный луч будет следовать по пути очень близкому падающему.

Как видим, закон исполняется во всех случаях.

Заключение

Законы отражения светового излучения очень важны для нас, поскольку они являются основополагающими физическими явлениями. Они нашли обширное применение в различных сферах человеческой деятельности. Изучение основ оптики происходит еще в средней школе, что лишний раз доказывает важность таких базовых знаний.


Как самому сделать ангельские глазки для ваза?

Похожие публикации