Энергия запасается в виде атф, которая затем используется в организме для синтеза веществ, выделения тепла, мышечные сокращения и т.Д. Белки должны быть уравновешены углеводами

Любому организму для полноценной работы нужна энергия. Человек её получает благодаря обмену веществ, который возможен при условии поступления извне необходимого количества белков, жиров и углеводов. Такой процесс происходит постоянно. Если баланс между полученной и растраченной энергией не нарушен — значит обмен веществ в порядке. Его сбой может привести к ухудшению здоровья — от изменения настроения до больничной койки.

Почему нарушается обмен веществ

Причин ухудшения метаболизма много. Чтобы выяснить основную, нужно проанализировать свой образ жизни:

  • питание должно быть регулярным и сбалансированным;
  • сон — крепким и полноценным;
  • движение — регулярным и активным;
  • воздух — свежим и чистым;
  • настроение — хорошим;
  • набор витаминов и микроэлементов — полным.

Люди, которые занимаются спортом, знают о необходимости соблюдения режима питания и о пользе свежего воздуха. Это их образ жизни. Диета также имеет право на существование. Но вот качество потребляемых продуктов часто не соответствует нормам. И объём не всегда можно точно рассчитать. А ведь именно пища является основным источником необходимых для нормальной работы человеческих органов полезных элементов. Из-за недостаточного, несвоевременного и несбалансированного питания происходят сбои в процессе обмена веществ.

Для чего нужны витамины и микроэлементы

К сожалению, организм человека не способен вырабатывать витамины. Их основная функция — регулировать обмен веществ, обеспечивая нормальное протекание разнообразных процессов. Кроветворение, сердечно-сосудистая, нервная и пищеварительная системы, образование ферментов, устойчивость к вредному воздействию окружающей среды — всё это обеспечивается нормальным уровнем витаминов в организме. Каждый из них отвечает за свой участок.

Как и витамины, микроэлементы (химические вещества) нужны организму в малых количествах, но их недостаток сильно влияет на функционирование всех жизненно важных систем. Они постоянно выводятся из организма, поэтому необходимо регулярное их пополнение.

Как пополнить запасы витаминов и микроэлементов

В жизни человека существуют особые периоды повышенного спроса на полезные вещества. Если исключить сезонный авитаминоз, то это время роста и больших физических нагрузок (т. е. всё лучшее детям и спортсменам). Не всегда есть возможность пополнить запас путём естественного употребления высококачественных продуктов. На помощь приходят специально разработанные ведущими фармацевтическими компаниями препараты. Так, более пятидесяти лет их производством занимается семейная американская фирма NOW Foods: Natural, Organic, Wholesome, т. е. натуральный, органический, полезный.

Если есть проблемы с нервной или сердечно-сосудистой системами, когда снижен иммунитет и нарушена работа эндокринной системы, стоит обратить внимание на препарат в таблетках «Витамин Б6 ».

Любые добавки не являются лекарствами, они только способствуют предотвращению заболевания либо ускорению процесса выздоровления. Поэтому не стоит ждать болезни. Если чувствуете, что с продуктами поступает недостаточное количество витамина, то можно пропить профилактический курс.

Чем полезны витамины группы B

Значение этих элементов для полноценного функционирования организма переоценить сложно.

Тиамин (В1) благоприятно влияет на усвоение пищи, нормализует работу всех систем.

Рибофлавин (В2) помогает во всех обменных процессах, отличный антиоксидант.

Ниацин (В3) воздействует прежде всего на кровеносные сосуды.

Цианокобаламин (В12) способен синтезироваться в кишечнике, регулирует жировой и углеводный обмен. Он один из важнейших факторов нормального роста, служит для профилактики нервных расстройств, отвечает за репродуктивные способности у мужчин.

Витамин B6 (пиридоксин) — один из наиболее востребованных в этой группе, т. к.:

  • принимает активное участие в обмене веществ и усвоении белка, помогая наращиванию мышечной массы;
  • снижает уровень холестерина и липидов в крови;
  • улучшает работу сердечной мышцы;
  • благотворно воздействует на нервную систему, поскольку участвует в выработке серотонина;
  • нормализует работу печени;
  • выполняет функции антиоксиданта, замедляя процессы старения;
  • уменьшает судороги и спазмы мышц.

При тяжёлых физических нагрузках норму витамина В6 нужно увеличить в два раза. В этом случае запасы проще всего восполнять искусственным путём. Он входит также в сложные препараты.

Например, Now Foods производит витаминный комплекс ZMA , который, кроме В6, имеет в составе магний и цинк, благотворно влияющие на все системы человека. Этот БАД специально предназначен для восполнения дефицита элементов в теле спортсменов. Магний помогает увеличивать мышечную силу, изменяя уровень тестостерона. К сожалению, с пищей поступает недостаточное количество этого вещества. А его дефицит тормозит образование белка, замедляет мозговые процессы и вызывает нарушения в работе нервной системы. В результате:

  • появляются судороги и спазмы икроножных мышц;
  • повышается давление;
  • нарушается сердечный ритм;
  • проявляется быстрая утомляемость и депрессия.

Изменение объёма магния приводит к уменьшению количества цинка, который участвует в образовании аминокислот в мышцах, выработке тестостерона и гормона роста. От его недостаточного количества страдают иммунная система и синтез половых гормонов. Он повышает уровень распада жиров, предупреждая проблемы с печенью.

Все компоненты БАДа прекрасно взаимодействуют, способствуя более эффективному влиянию на организм человека. Комплекс ZMA — отличное средство для наращивания мышечной массы.

Как поддержать баланс витаминов и минералов

Порой огромные нагрузки спортсменов приводят к ослаблению организма. Причиной этого может стать неправильное питание, стресс и другие факторы, которые нарушают баланс веществ, необходимых для нормального функционирования всех систем человека. Поэтому мало кто отказывается от компенсирующих препаратов, ведь витаминные комплексы показаны человеку с детского возраста, и правильное их применение даёт только положительные результаты. Не стоит думать, что приём повышенных доз поможет добиться лучшего эффекта. Избыток витаминов и минералов может привести к негативным последствиям, поэтому изготовитель проводит тщательные исследования и рассчитывает оптимальные дозы.

БАДы, предлагаемые интернет-магазином NOW Foods, не являются лекарственными препаратами. Рассчитывать на излечение запущенных форм расстройств в работе организма не стоит. Биологически активные комплексы — это отличный способ ускорить процесс восстановление или предупредить заболевание. Все они созданы с заботой о здоровье.

Понравилось? - Расскажи друзьям!

Из клеток состоят все живые организмы, кроме вирусов. Они обеспечивают все необходимые для жизни растения или животного процессы. Клетка и сама может быть отдельным организмом. И разве может такая сложная структура жить без энергии? Конечно, нет. Так как же происходит обеспечение клеток энергией? Оно базируется на процессах, которые мы рассмотрим ниже.

Обеспечение клеток энергией: как это происходит?

Немногие клетки получают энергию извне, они вырабатывают ее сами. обладают своеобразными "станциями". И источником энергии в клетке является митохондрия — органоид, который ее вырабатывает. В нем происходит процесс клеточного дыхания. За счет него и происходит обеспечение клеток энергией. Однако присутствуют они только у растений, животных и грибов. В клетках бактерий митохондрии отсутствуют. Поэтому у них обеспечение клеток энергией происходит в основном за счет процессов брожения, а не дыхания.

Строение митохондрии

Это двумембранный органоид, который появился в эукариотической клетке в процессе эволюции в результате поглощения ею более мелкой Этим можно объяснить то, что в митохондриях присутствует собственная ДНК и РНК, а также митохондриальные рибосомы, вырабатывающие нужные органоидам белки.

Внутренняя мембрана обладает выростами, которые называются кристы, или гребни. На кристах и происходит процесс клеточного дыхания.

То, что находится внутри двух мембран, называется матрикс. В нем расположены белки, ферменты, необходимые для ускорения химических реакций, а также молекулы РНК, ДНК и рибосомы.

Клеточное дыхание — основа жизни

Оно проходит в три этапа. Давайте рассмотрим каждый из них более подробно.

Первый этап — подготовительный

Во время этой стадии сложные органические соединения расщепляются на более простые. Так, белки распадаются до аминокислот, жиры — до карбоновых кислот и глицерина, нуклеиновые кислоты — до нуклеотидов, а углеводы — до глюкозы.

Гликолиз

Это бескислородный этап. Он заключается в том, что вещества, полученные во время первого этапа, расщепляются далее. Главные источники энергии, которые использует клетка на данном этапе, — молекулы глюкозы. Каждая из них в процессе гликолиза распадается до двух молекул пирувата. Это происходит во время десяти последовательных химических реакций. Вследствие первых пяти глюкоза фосфорилируется, а затем расщепляется на две фосфотриозы. При следующих пяти реакциях образуется две молекулы и две молекулы ПВК (пировиноградной кислоты). Энергия клетки и запасается именно в виде АТФ.

Весь процесс гликолиза можно упрощенно изобразить таким образом:

2НАД+ 2АДФ + 2Н 3 РО 4 + С 6 Н 12 О 6 2Н 2 О + 2НАД. Н 2 +2С 3 Н 4 О 3 + 2АТФ

Таким образом, используя одну молекулу глюкозы, две молекулы АДФ и две фосфорной кислоты, клетка получает две молекулы АТФ (энергия) и две молекулы пировиноградной кислоты, которую она будет использовать на следующем этапе.

Третий этап — окисление

Данная стадия происходит только при наличии кислорода. Химические реакции этого этапа происходят в митохондриях. Именно это и есть основная часть во время которой высвобождается больше всего энергии. На этом этапе вступая в реакцию с кислородом, расщепляется до воды и углекислого газа. Кроме того, при этом образуется 36 молекул АТФ. Итак, можно сделать вывод, что главные источники энергии в клетке — глюкоза и пировиноградная кислота.

Суммируя все химические реакции и опуская подробности, можно выразить весь процесс клеточного дыхания одним упрощенным уравнением:

6О 2 + С 6 Н 12 О 6 + 38АДФ + 38Н 3 РО 4 6СО 2 + 6Н2О + 38АТФ.

Таким образом, в ходе дыхания из одной молекулы глюкозы, шести молекул кислорода, тридцати восьми молекул АДФ и такого же количества фосфорной кислоты клетка получает 38 молекул АТФ, в виде которой и запасается энергия.

Разнообразие ферментов митохондрий

Энергию для жизнедеятельности клетка получает за счет дыхания — окисления глюкозы, а затем пировиноградной кислоты. Все эти химические реакции не могли бы проходить без ферментов — биологических катализаторов. Давайте рассмотрим те из них, которые находятся в митохондриях — органоидах, отвечающих за клеточное дыхание. Все они называются оксидоредуктазами, потому что нужны для обеспечения протекания окислительно-восстановительных реакций.

Все оксидоредуктазы можно разделить на две группы:

  • оксидазы;
  • дегидрогеназы;

Дегидрогеназы, в свою очередь, делятся на аэробные и анаэробные. Аэробные содержат в своем составе кофермент рибофлавин, который организм получает из витамина В2. Аэробные дегидрогеназы содержат в качестве коферментов молекулы НАД и НАДФ.

Оксидазы более разнообразны. В первую очередь они делятся на две группы:

  • те, которые содержат медь;
  • те, в составе которых присутствует железо.

К первым относятся полифенолоксидазы, аскорбатоксидаза, ко вторым — каталаза, пероксидаза, цитохромы. Последние, в свою очередь, делятся на четыре группы:

  • цитохромы a;
  • цитохромы b;
  • цитохромы c;
  • цитохромы d.

Цитохромы а содержат в своем составе железоформилпорфирин, цитохромы b — железопротопорфирин, c — замещенный железомезопорфирин, d — железодигидропорфирин.

Возможны ли другие пути получения энергии?

Несмотря на то что большинство клеток получают ее в результате клеточного дыхания, существуют также анаэробные бактерии, для существования которых не нужен кислород. Они вырабатывают необходимую энергию путем брожения. Это процесс, в ходе которого с помощью ферментов углеводы расщепляются без участия кислорода, вследствие чего клетка и получает энергию. Различают несколько видов брожения в зависимости от конечного продукта химических реакций. Оно бывает молочнокислое, спиртовое, маслянокислое, ацетон-бутановое, лимоннокислое.

Для примера рассмотрим Его можно выразить вот таким уравнением:

С 6 Н 12 О 6 С 2 Н 5 ОН + 2СО 2

То есть одну молекулу глюкозы бактерия расщепляет до одной молекулы этилового спирта и двух молекул оксида (IV) карбона.

Энергетический обмен - это по-этапный распад сложных органических соединений, протекающий с выделением энергии, которая запасается в макроэргических связях молекул АТФ и используется потом в процессе жизнедеятельности клетки, в том числе на биосинтез, т.е. пластический обмен.

В аэробных организмах выделяют:

  1. Подготовительный - расщепление биополимеров до мономеров.
  2. Бескислородный - гликолиз - расщепление глюкозы до пировиноградной кислоты.
  3. Кислородный - расщепление пировиноградной кислоты до углекислого газа и воды.

Подготовительный этап

На подготовительном этапе энергетического обмена происходит расщепление поступивших с пищей органических соединений на более простые, обычно мономеры. Так углеводы расщепляются до сахаров, в том числе глюкозы; белки - до аминокислот; жиры - до глицерина и жирных кислот.

Хотя при этом выделяется энергия, она не запасается в АТФ и, следовательно, не может быть использована впоследствии. Энергия рассеивается в виде тепла.

Расщепление полимеров у многоклеточных сложноорганизованных животных протекает в пищеварительном тракте под действием выделяющихся сюда железами ферментов. Затем образовавшиеся мономеры всасываются в кровь в основном через кишечник. Уже кровью питательные вещества разносятся по клеткам.

При этом не все вещества разлагаются до мономеров в пищеварительной системе. Расщепление многих происходит непосредственно в клетках, в их лизосомах. У одноклеточных организмов поглощенные вещества попадают в пищеварительные вакуоли, где и перевариваются.

Образовавшиеся мономеры могут использоваться как для энергетического, так и пластического обмена. В первом случае они расщепляются, во-втором – из них синтезируются компоненты самих клеток.

Бескислородный этап энергетического обмена

Бескислородный этап протекает в цитоплазме клеток и в случае аэробных организмов включает только гликолиз - ферментативное многоступенчатое окисление глюкозы и ее расщепление до пировиноградной кислоты , которую также называют пируватом.

Молекула глюкозы включает шесть атомов углерода. При гликолизе она расщепляется до двух молекул пирувата, который включает три атома углерода. При этом отщепляется часть атомов водорода, которые передаются на кофермент НАД, который, в свою очередь, потом будет участвовать в кислородном этапе.

Часть выделяющейся при гликолизе энергии запасается в молекулах АТФ. На одну молекулу глюкозы синтезируется всего две молекулы АТФ.

Энергия, оставшаяся в пирувате, запасенная в НАД, у аэробов далее будет извлечена на следующем этапе энергетического обмена.

В анаэробных условиях, когда кислородный этап клеточного дыхания отсутствует, пируват «обезвреживается» в молочную кислоту или подвергается брожению. При этом энергия не запасается. Таким образом, здесь полезный энергетический выход обеспечивается только малоэффектвным гликолизом.

Кислородный этап

Кислородный этап протекает в митохондриях . В нем выделяют два подэтапа: цикл Кребса и окислительное фосфорилирование. Поступающий в клетки кислород используется только на втором. В цикле Кребса происходит образование и выделение углекислого газа.

Цикл Кребса протекает в матриксе митохондрий, осуществляется множеством ферментов. В него поступает не сама молекула пировиноградной кислоты (или жирной кислоты, аминокислоты), а отделившаяся от нее с помощью кофермента-А ацетильная группа, включающая два атома углерода бывшего пирувата. За многоступенчатый цикл Кребса происходит расщепление ацетильной группы до двух молекул CO 2 и атомов водорода. Водород соединяется с НАД и ФАД. Также происходит синтез молекулы ГДФ, приводящей к синтезу потом АТФ.

На одну молекулу глюкозы, из которой образуется два пирувата, приходится два цикла Кребса. Таким образом, образуется две молекулы АТФ. Если бы энергетический обмен заканчивался здесь, то суммарно расщепление молекулы глюкозы давало бы 4 молекулы АТФ (две от гликолиза).

Окислительное фосфорилирование протекает на кристах – выростах внутренней мембраны митохондрий. Его обеспечивает конвейер ферментов и коферментов, образующий так называемую дыхательную цепь, заканчивающуюся ферментом АТФ-синтетазой.

По дыхательной цепи происходит передача водорода и электронов, поступивших в нее от коферментов НАД и ФАД. Передача осуществляется таким образом, что протоны водорода накапливаются с внешней стороны внутренней мембраны митохондрий, а последние ферменты в цепи передают только электроны.

В конечном итоге электроны передаются молекулам кислорода, находящимся с внутренней стороны мембраны, в результате чего они заряжаются отрицательно. Возникает критический уровень градиента электрического потенциала, приводящий к перемещению протонов через каналы АТФ-синтетазы. Энергия движения протонов водорода используется для синтеза молекул АТФ, а сами протоны соединяются с анионами кислорода с образованием молекул воды.

Энергетический выход функционирования дыхательной цепи, выраженный в молекулах АТФ, велик и суммарно составляет от 32 до 34 молекул АТФ на одну исходную молекулу глюкозы.

Из потребляемой нами пища вырабатывается энергия, которая необходима для осуществления любых функций нашего организма - от ходьбы и способности говорить до переваривания и дыхания. Но почему мы часто жалуемся на нехватку энергии, на раздражительность или вялость? Ответ заключается в том, какая пища составляет наш повседневный рацион.

Выработка энергии

Помимо воды и воздуха, наш организм постоянно нуждается в регулярном притоке пищи, которая и обеспечивает запасы энергии, необходимой для движения, дыхания, терморегуляции, работы сердца, кровообращения и деятельности головного мозга. Поразительно, но даже в состоянии покоя наш мозг потребляет около 50% энергии, запасаемой из поглощенной пищи, причем потребление энергии резко возрастает во время интенсивной мозговой деятельности, например, во время сдачи экзаменов. Каким же образом происходит преобразование пищи в энергию?

В процессе пищеварения, более подробно описанном в соответствующем разделе (-79), происходит распад пищи до отдельных молекул глюкозы, которые затем попадают через стенку кишечника в кровь. С кровотоком глюкоза переносится в печень, где фильтруется и откладывается про запас. Гипофиз (расположенная в головном мозгу железа внутренней секреции) подает поджелудочной и щитовидной железам сигнал на выброс гормонов, которые заставляют печень выбросить накопившуюся глюкозу в кровяное русло, после чего кровь доставляет её к тем органам и мышцам, которые испытывают в ней потребность.

Достигнув нужного органа, молекулы глюкозы проникают в клетки, где и преобразуются в источник энергии, которая доступна для использования клеткам. Таким образом, процесс постоянного снабжения органов энергией зависит от уровня глюкозы в крови.

Для того, чтобы увеличить запасы энергии организма, мы должны употреблять определенные виды продуктов, в частности, способных повышать уровень обмена веществ и поддерживать необходимый уровень энергии. Чтобы понять, каким образом все это происходит, рассмотрим следующие вопросы:

Как пища превращается в энергию?

В каждой клетке нашего тела имеются митохондрии. Здесь компоненты, входящие в состав пищевых продуктов, претерпевают серию химических превращений, в результате чего образуется энергия. Каждая клетка в данном случае представляет собой миниатюрную электростанцию. Любопытно, что количество митохондрий в каждой клетке зависит от энергетических потребностей. При регулярных физических упражнениях оно возрастает, чтобы обеспечить большую выработку необходимой энергии. И наоборот, малоподвижный образ жизни приводит к снижению выработки энергии и, соответственно, уменьшению количества митохондрий. Для преобразования в энергию необходимы разные питательные вещества, каждое из которых обусловливает различные этапы процесса получения энергии (см. Энергетическая пища). Поэтому потребляемая пища должна быть не только сытной, но и содержать все типы питательных веществ, необходимых для выработки энергии: углеводы, белки и жиры.

ОЧЕНЬ ВАЖНО ОГРАНИЧИТЬ СОДЕРЖАНИЕ В РАЦИОНЕ ПРОДУКТОВ, ОТБИРАЮЩИХ ЭНЕРГИЮ ИЛИ ПРЕПЯТСТВУЮЩИХ ЕЕ ОБРАЗОВАНИЮ. ВСЕ ПОДОБНЫЕ ПРОДУКТЫ СТИМУЛИРУЮТ ВЫБРОС ГОРМОНА АДРЕНАЛИНА.

Для нормального функционирования организма важно поддерживать постоянный уровень глюкозы в крови (см. Поддержание нормального уровня сахара в крови, - 46). С этой целью желательно отдавать предпочтение пище с низким гликемическим индексом . Добавляя к каждой трапезе или закуске протеины и клетчатку, вы тем самым способствуете накоплению достаточного количества необходимой энергии.

Углеводы и глюкоза

Энергия, которую мы извлекаем из пищи, поступает в большей степени от углеводов, нежели белков или жиров. Углеводы с большей легкостью превращаются в глюкозу и являются благодаря этому наиболее удобным источником энергии для организма.

Глюкоза может быть израсходована на энергетические нужды немедленно, либо откладывается про запас в печени и мышцах. Она сохраняется в виде гликогена, который, при необходимости, легко превращается в неё вновь. При синдроме «бейся или беги» (см.), гликоген высвобождается в кровяное русло для обеспечения организма дополнительной энергией. Запасается гликоген в растворимой форме.

Белки должны быть уравновешены углеводами

Хотя углеводы и белки необходимы всем, соотношения их могут колебаться в зависимости от индивидуальных потребностей и привычек. Оптимальное соотношение подбирается индивидуально методом проб и ошибок, но руководствоваться можно данными, представленными в таблице на стр.43.

Будьте осторожней с белками. Всегда добавляйте к ним высококачественные сложные углеводы , например, плотные овощи или зерна злаковых. Преобладание белковой пищи приводит к подкислению внутренней среды организма, тогда как она должна быть слабо щелочной. Внутренняя система саморегуляции позволяет организму возвращаться к подщелоченному состоянию посредством высвобождения кальция из костей. В конечном итоге это может нарушить структуру костей, привести к остеопорозу, при котором нередко случаются переломы.

Оздоровительные напитки и закуски, содержащие глюкозу, обеспечивают быстрый приток энергии, однако эффект этот быстротечен. Более того, он сопровождается истощением запасов накопленных организмом энергии. Во время занятий спортом вы тратите много энергии, поэтому можете перед ними «подзаправиться» соевым творожком со свежими ягодами.

Хорошее питание, хорошее настроение

Попробуйте немного повысить потребление белков, одновременно снижая количество углеводов, или наоборот, пока не определите оптимальный для себя уровень энергетики.

Энергетические потребности в течение жизни

Потребность в дополнительной энергии возникает у нас на различных этапах жизни. В детстве, например, энергия необходима для роста и учебы, в подростковом возрасте - для обеспечения гормональных и физических сдвигов в период полового созревания. При беременности , потребность в энергии растет как у матери, так и у плода, а при стрессе лишняя энергия затрачивается в течение всей жизни. Кроме того, человеку, ведущему активный образ жизни, требуется больше энергии, чем обычным людям.

Расхитители энергии

Очень важно ограничить содержание в рационе продуктов, отбирающих энергию или препятствующих её образованию. К таким продуктам относится алкоголь, чай, кофе и шипучие напитки, а также торты, бисквиты и сладости. Все подобные продукты стимулируют выброс гормона адреналина, который образуется в надпочечниках. Быстрее всего адреналин образуется при так называемом синдроме «бейся или беги», когда нам что-то угрожает. Выброс адреналина мобилизует организм к действию. Сердце начинает биться учащенно, легкие поглощают больше воздуха, печень высвобождает в кровь больше глюкозы, а кровь приливает туда, где она нужнее - например, к ногам. Постоянно повышенное образование адреналина, в частности, при соответствующем питании, может вести к непреходящему ощущению усталости.

Стресс также считают одним из расхитителей энергии, поскольку при стрессе происходит выброс запасенной глюкозы из печени и мышц, что приводит к краткосрочному всплеску энергии с последующим состояния длительного утомления.

Энергия и эмоции

При синдроме «бейся или беги», гликоген (запасенные углеводы) поступает из печени в кровь, что приводит к повышению уровня в ней сахара. Ввиду этого длительное стрессовое состояние способно серьезно повлиять на уровень сахара в крови. Аналогичное воздействие оказывают кофеин и никотин; последние способствуют секреции двух гормонов - кортизона и адреналина, - которые вмешиваются в процесс пищеварения и побуждают печень выбрасывать запасенный гликоген.

Пища, богатая энергией

Наиболее богатыми в энергетическом отношении являются продукты, содержащие комплекс витаминов группы В: В1, В2, В3, В5, В6, В12, В9 (фолиевая кислота) и биотин. Все они в изобилии встречаются в зернах проса, гречихи, ржи, квиноа (южно-американский злак, очень популярный на Западе), кукурузы и ячменя. В прорастающих зернах энергетическая ценность возрастает многократно - питательную ценность проростков повышают способствующие росту ферменты. Много витаминов В содержится также в свежей зелени.

Для энергетики организма важное значение имеют также витамин С, который присутствует во фруктах (например, в апельсинах) и овощах (картофель, перец); магний, которого много в зелени, орехах и семечках; цинк (яичный желток, рыба, семечки подсолнуха); железо (зерна, тыквенные семечки, чечевица); медь (оболочка бразильского ореха, овес, лосось, грибы), а также кофермент Q10, который присутствует в говядине, сардинах, шпинате и арахисе.

Поддержание нормального уровня сахара в крови

Как часто приходилось вам просыпаться по утрам в дурном настроении, чувствуя вялость, разбитость, и испытывая настоятельную необходимость поспать ещё часок-другой? И жизнь кажется ни в радость. Или, возможно, промучившись до полудня, вы задаетесь вопросом, а дотянете ли до обеда. Еще хуже, когда усталость одолевает вас после обеда, к концу рабочего дня, и вы не представляете, как доберетесь домой. А там ведь надо ещё ужин приготовить. А потом - съесть. И не спрашиваете ли вы себя: «Господи, и куда только последние силенки подевались?»

Постоянная усталость и отсутствие энергии могут быть вызваны разными причинами, но чаще всего являются следствием бедного рациона и/или нерегулярного питания, а также злоупотребления стимуляторами, помогающими «продержаться».

Депрессия, раздражительность и резкие перепады настроения, наряду с предменструальным синдромом , вспышками гнева, волнением и нервозностью - могут быть результатом дисбаланса в процессе образования энергии, недостаточности питания и частом сидении на причудливых диетах.

Получив представление о том, как и из чего образуется энергия в нашем организме, мы можем в сжатые сроки повысить свою энергетику, что позволит не только сохранять работоспособность и хорошее настроение в течение всего дня, но и обеспечит здоровый глубокий сон по ночам.

Этот материал составлен на основе статьи «Обзор типов накопителей энергии», ранее опубликованной на http://khd2.narod.ru/gratis/accumul.htm, с добавлением нескольких абзацев из других источников, например, http://battery-info.ru/alternatives.

Одна из основных проблем альтернативной энергетики — неравномерность поступления ее из возобновляемых источников. Солнце светит только днем и в безоблачную погоду, ветер то дует, а то утихнет. Да и потребности в электроэнергии не постоянны, например, на освещение днем ее требуется меньше, вечером — больше. А людям нравится, когда по ночам города и деревни залиты огнями иллюминаций. Ну, или хотя бы просто улицы освещены. Вот и возникает задача — сохранить полученную энергию на какое-то время, чтобы использовать тогда, когда потребность в ней максимальна, а поступление недостаточно.

ГАЭС TaumSauk в США. Несмотря на небольшую мощность известна всему миру благодаря верхнему бассейну в форме сердца.

Существуют и менее масштабные гидравлические накопители гравитационной энергии. Вначале перекачиваем 10 т воды из подземного резервуара (колодца) в емкость на вышке. Затем вода из емкости под действием силы тяжести перетекает обратно в резервуар, вращая турбину с электрогенератором. Срок службы такого накопителя может составлять 20 и более лет. Достоинства: при использовании ветродвигателя последний может непосредственно приводить в движение водяной насос, вода из емкости на вышке может использоваться для других нужд.

К сожалению, гидравлические системы труднее поддерживать в должном техническом состоянии, чем твердотельные, - прежде всего это касается герметичности резервуаров и трубопроводов и исправности запорного и перекачивающего оборудования. И ещё одно важное условие - в моменты накопления и использования энергии рабочее тело (по крайней мере, его достаточно большая часть) должно находиться в жидком агрегатном состоянии, а не пребывать в виде льда или пара. Зато иногда в подобных накопителях возможно получение дополнительной даровой энергии, - скажем, при пополнении верхнего резервуара талыми или дождевыми водами.

Накопители механической энергии

Механическая энергия проявляется при взаимодей­ствии, движении отдельных тел или их частиц. К ней относят кинетическую энергию движения или вращения тела, энер­гию деформации при сгибании, растяжении, закручивании, сжатии упругих тел (пружин).

Гироскопические накопители энергии

Гироскопический накопитель Уфимцева.

В гироскопических накопителях энергия запасается в виде кинетической энергии быстро вращающегося маховика. Удельная энергия, запасаемая на каждый килограмм веса маховика, значительно больше той, что можно запасти в килограмме статического груза, даже подняв его на большую высоту, а последние высокотехнологичные разработки обещают плотность накопленной энергии, сравнимую с запасом химической энергии в единице массы наиболее эффективных видов химического топлива. Другой огромный плюс маховика - это возможность быстрой отдачи или приёма очень большой мощности, ограниченной лишь пределом прочности материалов в случае механической передачи или «пропускной способностью» электрической, пневматической либо гидравлической передач.

К сожалению, маховики чувствительны к сотрясениям и поворотам в плоскостях, отличных от плоскости вращения, поскольку при этом возникают огромные гироскопические нагрузки, стремящиеся погнуть ось. К тому же время хранения накопленной маховиком энергии относительно невелико и для традиционных конструкций обычно составляет от нескольких секунд до нескольких часов. Далее потери энергии на трение становятся слишком заметными… Впрочем, современные технологии позволяют кардинально увеличить время хранения - вплоть до нескольких месяцев.

Наконец, ещё один неприятный момент - запасённая маховиком энергия прямо зависит от его скорости вращения, поэтому по мере накопления или отдачи энергии скорость вращения всё время меняется. В то же время в нагрузке очень часто требуется стабильная скорость вращения, не превышающая нескольких тысяч оборотов в минуту. По этой причине чисто механические системы передачи энергии на маховик и обратно могут оказаться слишком сложными в изготовлении. Иногда упростить ситуацию может электромеханическая передача с использованием мотор-генератора, размещённого на одном валу с маховиком или связанного с ним жёстким редуктором. Но тогда неизбежны потери энергии на нагрев проводов и обмоток, которые могут быть гораздо выше, чем потери на трение и проскальзывание в хороших вариаторах.

Особенно перспективны так называемые супермаховики , состоящие из витков стальной ленты, проволоки или высокопрочного синтетического волокна. Навивка может быть плотной, а может иметь специально оставленное пустое пространство. В последнем случае по мере раскручивания маховика витки ленты перемещаются от его центра к периферии вращения, изменяя момент инерции маховика, а если лента пружинная, то и запасая часть энергии в энергии упругой деформации пружины. В результате в таких маховиках скорость вращения не так прямо связана с накопленной энергией и гораздо стабильнее, чем в простейших цельнотелых конструкциях, а их энергоёмкость заметно больше. Помимо большей энергоёмкости, они более безопасны в случае различных аварий, так как в отличии от осколков большого монолитного маховика, по своей энергии и разрушительной силе сравнимых с пушечными ядрами, обломки пружины обладают гораздо меньшей «поражающей способностью» и обычно достаточно эффективно тормозят лопнувший маховик за счёт трения о стенки корпуса. По этой же причине и современные цельнотелые маховики, рассчитанные на работу в режимах, близких к переделу прочности материала, часто изготавливаются не монолитными, а сплетёнными из тросов или волокон, пропитанных связующим веществом.

Современные конструкции с вакуумной камерой вращения и магнитным подвесом супермаховика из кевларового волокна обеспечивают плотность запасённой энергии более 5 МДж/кг, причём могут сохранять кинетическую энергию неделями и месяцами. По оптимистичным оценкам, использование для навивки сверхпрочного «суперкарбонового» волокна позволит увеличить скорость вращения и удельную плотность запасаемой энергии ещё во много раз - до 2-3 ГДж/кг (обещают, что одной раскрутки такого маховика весом 100-150 кг хватит для пробега в миллион километров и более, т.е. на фактически на всё время жизни автомобиля!). Однако стоимость этого волокна пока также во много раз превышает стоимость золота, так что подобные машины ещё не по карману даже арабским шейхам… Подробнее о маховичных накопителях можно почитать в книге Нурбея Гулиа .

Гирорезонансные накопители энергии

Эти накопители представляют собой тот же самый маховик, но выполненный из эластичного материала (например, резины). В результате у него появляются принципиально новые свойства. По мере нарастания оборотов на таком маховике начинают образовываться «выросты»-«лепестки» - сначала он превращается в эллипс, затем в «цветок» с тремя, четырьмя и более «лепестками»… При этом после начала образования «лепестков» скорость вращения маховика уже практически не меняется, а энергия запасается в резонансной волне упругой деформации материала маховика, формирующей эти «лепестки».

Такими конструкциями в конце 1970-х и начале 1980-х годов в Донецке занимался Н.З.Гармаш. Полученные им результаты впечатляют - по его оценкам, при рабочей скорости маховика, составляющей всего 7-8 тысяч об/мин, запасённой энергии было достаточно для того, чтобы автомобиль мог проехать 1500 км против 30 км с обычным маховиком тех же размеров. К сожалению, более свежие сведения об этом типе накопителей неизвестны.

Механические накопители с использованием сил упругости

Этот класс устройств обладает очень большой удельной ёмкостью запасаемой энергии. При необходимости соблюдения небольших габаритов (несколько сантиметров) его энергоёмкость - наибольшая среди механических накопителей. Если требования к массогабаритным характеристикам не столь жёсткие, то большие сверхскоростные маховики превосходят его по энергоёмкости, но они гораздо более чувствительны к внешним факторам и обладают намного меньшим временем хранения энергии.

Пружинные механические накопители

Сжатие и распрямление пружины способно обеспечить очень большой расход и поступление энергии в единицу времени - пожалуй, наибольшую механическую мощность среди всех типов накопителей энергии. Как и в маховиках, она ограничена лишь пределом прочноcти материалов, но пружины обычно реализуют рабочее поступательное движение непосредственно, а в маховиках без довольно сложной передачи не обойтись (не случайно в пневматическом оружии используются либо механические боевые пружины, либо баллончики с газом, которые по своей сути являются предварительно заряженными пневматическими пружинами; до появления огнестрельного оружия для боя на дистанции применялось также именно пружинное оружие - луки и арбалеты, ещё задолго до новой эры полностью вытеснившие в профессиональных войсках пращу с её кинетическим накоплением энергии).

Срок хранения накопленной энергии в сжатой пружине может составлять многие годы. Однако следует учитывать, что под действием постоянной деформации любой материал с течением времени накапливает усталость, а кристаллическая решётка металла пружины потихоньку изменяется, причём чем больше внутренние напряжения и чем выше окружающая температура, тем скорее и в большей степени это произойдёт. Поэтому через несколько десятилетий сжатая пружина, не изменившись внешне, может оказаться «разряженной» полностью или частично. Тем не менее, качественные стальные пружины, если они не подвергаются перегреву или переохлаждению, способны работать веками без видимой потери ёмкости. Например, старинные настенные механические часы с одного полного завода по-прежнему идут две недели - как и более полувека назад, когда они были изготовлены.

При необходимости постепенной равномерной «зарядки» и «разрядки» пружины обеспечивающий это механизм может оказаться весьма сложным и капризным (загляните в те же механические часы - по сути, множество шестерёнок и других деталей служат именно этой цели). Упростить ситуацию может электромеханическая передача, но она обычно накладывает существенные ограничения на мгновенную мощность такого устройства, а при работе с малыми мощностями (несколько сот ватт и менее) её КПД слишком низок. Отдельной задачей является накопление максимальной энергии в минимальном объёме, так как при этом возникают механические напряжения, близкие к пределу прочности используемых материалов, что требует особо тщательных расчётов и безупречного качества изготовления.

Говоря здесь о пружинах, нужно иметь в виду не только металлические, но и другие упругие цельнотелые элементы. Самые распространённые среди них - это резиновые жгуты. Кстати, по энергии, запасаемой на единицу массы, резина превосходит сталь в десятки раз, зато и служит она примерно во столько же раз меньше, причём, в отличии от стали, теряет свои свойства уже через несколько лет даже без активного использования и при идеальных внешних условиях - в силу относительно быстрого химического старения и деградации материала.

Газовые механические накопители

В этом классе устройств энергия накапливается за счёт упругости сжатого газа. При избытке энергии компрессор закачивает газ в баллон. Когда требуется использовать запасённую энергию, сжатый газ подаётся в турбину, непосредственно выполняющую необходимую механическую работу или вращающую электрогенератор. Вместо турбины можно использовать поршневой двигатель, который более эффективен при небольших мощностях (кстати, существуют и обратимые поршневые двигатели-компрессоры).

Практически каждый современный промышленный компрессор оснащён подобным аккумулятором - ресивером. Правда, давление там редко превышает 10 атм, и потому запас энергии в таком ресивере не очень большой, но и это обычно позволяет в несколько раз увеличить ресурс установки и сэкономить энергию.

Газ, сжатый до давления в десятки и сотни атмосфер, может обеспечить достаточно высокую удельную плотность запасённой энергии в течение практически неограниченного времени (месяцы, годы, а при высоком качестве ресивера и запорной арматуры - десятки лет, - недаром пневматическое оружие, использующее баллончики со сжатым газом, получило такое широкое распространение). Однако входящие в состав установки компрессор с турбиной или поршневой двигатель, - устройства достаточно сложные, капризные и имеющие весьма ограниченный ресурс.

Перспективной технологией создания запасов энергии является сжатие воздуха за счет доступной энергии в то время, когда непосредственная потребность в последней отсутствует. Сжатый воздух охлаждается и хранится при давлении 60-70 атмосфер. При необходимости расходовать запасенную энергию, воздух извлекается из накопителя, нагревается, а затем поступает в специальную газовую турбину, где энергия сжатого и нагретого воздуха вращает ступени турбины, вал которой соединен с электрическим генератором, выдающим электроэнергию в энергосистему.

Для хранения сжатого воздуха предлагается, например, использовать подходящие горные выработки или специально создаваемые подземные емкости в соляных породах. Концепция не нова, хранение сжатого воздуха в подземной пещере было запатентовано еще в 1948 году, а первый завод с накопителем энергии сжатого воздуха (CAES - compressed air energy storage) с мощностью 290 МВт работает на электростанции Huntorf в Германии с 1978 года. На этапе сжатия воздуха большое количество энергии теряется в виде тепла. Эта утерянная энергия должна быть компенсирована сжатому воздуху до этапа расширения в газовой турбине, для этого и используется углеводородное топливо, с помощью которого повышают температуру воздуха. Это значит, что установки имеют далеко не стопроцентный КПД.

Существует перспективное направление для повышения эффективности CAES. Оно заключается в удержании и сохранении тепла, выделяющегося при работе компрессора на этапе сжатия и охлаждения воздуха, с последующим его повторным использованием при обратном нагреве холодного воздуха (т.н. рекуперация). Тем не менее, этот вариант CAES имеет существенные технические сложности, особенно в направлении создания системы длительного сохранения тепла. В случае решения этих проблем, AA-CAES (Advanced Adiabatic-CAES) может проложить путь для крупномасштабных систем хранения энергии, проблема была поднята исследователями по всему миру.

Участники канадского стартапа Hydrostor другое необычное решение - закачивать энергию в подводные пузыри.

Накопление тепловой энергии

В наших климатических условиях очень существенная (зачастую - основная) часть потребляемой энергии расходуется на обогрев. Поэтому было бы очень удобно аккумулировать в накопителе непосредственно тепло и затем получать его обратно. К сожалению, в большинстве случаев плотность запасённой энергии очень мала, а сроки её сохранения весьма ограничены.

Существуют тепловые аккумуляторы с твёрдым либо плавящимся теплоаккумулирующим материалом; жидкостные; паровые; термохимические; с электронагревательным элементом. Тепловые аккумуляторы могут подключаться в систему с твердотопливным котлом, в гелиосистему или комбинированную систему.

Накопление энергии за счёт теплоёмкости

В накопителях этого типа аккумулирование тепла осуществляется за счет теплоемкости вещества, служащего рабочим телом. Классическим примером теплового аккумулятора может служить русская печь. Ее протапливали один раз в день и она потом обогревала дом в течение суток. В наше время под тепловым аккумулятором чаще всего подразумевают ёмкости для хранения горячей воды, обшитые материалом с высокими теплоизоляционными свойствами.

Существуют теплоаккумуляторы и на основе твердых теплоносителей, например, в керамических кирпичах.

Различные вещества обладают разной теплоёмкостью. У большинства она находится в пределах от 0.1 до 2 кДж/(кг·К). Аномально большой теплоёмкостью обладает вода - её теплоёмкость в жидкой фазе составляет примерно 4.2 кДж/(кг·К). Более высокую теплоёмкость имеет только весьма экзотический литий - 4.4 кДж/(кг·К).

Однако помимо удельной теплоёмкости (по массе) надо учитывать и объёмную теплоёмкость , позволяющую определить, сколько тепла нужно, чтобы изменить на одну и ту же величину температуру одного и того же объёма различных веществ. Она вычисляется из обычной удельной (массовой) теплоёмкости умножением её на удельную плотность соответствующего вещества. На объёмную теплоёмкость следует ориентироваться тогда, когда важнее объём теплоаккумулятора, чем его вес. Например, удельная теплоёмкость стали всего 0.46 кДж/(кг·К), но плотность 7800 кг/куб.м, а, скажем, у полипропилена - 1.9 кДж/(кг·К) - в 4 с лишним раза больше, однако плотность его составляет всего 900 кг/куб.м. Поэтому при одинаковом объёме сталь сможет запасти в 2.1 раза больше тепла, чем полипропилен, хотя и будет тяжелее почти в 9 раз. Впрочем, благодаря аномально большой теплоёмкости воды ни один материал не может превзойти её и по объёмной теплоёмкости. Однако объёмная теплоемкость железа и его сплавов (сталь, чугун) отличается от воды менее, чем на 20% - в одном кубическом метре они могут запасти более 3.5 МДж тепла на каждый градус изменения температуры, чуть-чуть меньше объёмная теплоёмкость у меди - 3.48 МДж/(куб.м·К). Теплоёмкость воздуха в нормальных условиях составляет примерно 1 кДж/кг, или 1.3 кДж/куб.м, поэтому чтобы нагреть кубометр воздуха на 1°, достаточно охладить на тот же градус чуть менее 1/3 литра воды (естественно, более горячей, чем воздух).

В силу простоты устройства (что может быть проще неподвижного сплошного куска твёрдого вещества либо закрытого резервуара с жидким теплоносителем?) подобные накопители энергии имеют практически неограниченное число циклов накопления-отдачи энергии и очень длительный срок службы - для жидких теплоносителей до высыхания жидкости либо до повреждения резервуара от коррозии или других причин, для твёрдотельных отсутствуют и эти ограничения. Но вот время хранения весьма ограничено и, как правило, составляет от нескольких часов до нескольких суток - на больший срок обычная теплоизоляция удержать тепло уже не способна, да и удельная плотность запасаемой энергии невелика.

Наконец, следует подчеркнуть ещё одно обстоятельство, - для эффективной работы важна не только теплоёмкость, но и теплопроводность вещества теплоаккумулятора. При высокой теплопроводности даже на достаточно быстрые изменения наружных условий теплоаккумулятор отреагирует всей своей массой, а следовательно и всей запасённой энергией - то есть максимально эффективно. В случае же плохой теплопроводности среагировать успеет только поверхностная часть теплоаккумулятора, а до глубинных слоёв кратковременные изменения внешних условий просто не успеют дойти, и существенная часть вещества такого теплоаккумулятора будет фактически исключена из работы. Полипропилен, упомянутый в рассмотренном чуть выше примере, имеет теплопроводность почти в 200 раз меньше, чем сталь, и потому, невзирая на достаточно большую удельную теплоёмкость, эффективным теплоаккумулятором быть не может. Впрочем, технически проблема легко решается организацией специальных каналов для циркуляции теплоносителя внутри теплоаккумулятора, но очевидно, что такое решение существенно усложняет конструкцию, снижает её надёжность и энергоёмкость и непременно будет требовать периодического техобслуживания, которое вряд ли нужно монолитному куску вещества.

Как это не покажется странным, иногда нужно бывает накапливать и хранить не тепло, а холод. В США уже более десяти лет работают компании, которые предлагают «аккумуляторы» на основе льда для установки в кондиционеры воздуха. В ночное время, когда электроэнергии в избытке и она продаётся по сниженным тарифам, кондиционер замораживает воду, то есть переходит в режим холодильника. В дневное время он потребляет в несколько раз меньше энергии, работая как вентилятор. Энергопрожорливый компрессор на это время отключается. Подробнее .

Накопление энергии при смене фазового состояния вещества

Если внимательно посмотреть на тепловые параметры различных веществ, то можно увидеть, что при смене агрегатного состояния (плавлении-твердении, испарении-конденсации) происходит значительное поглощение или выделение энергии. Для большинства веществ тепловой энергии таких превращений достаточно, чтобы изменить температуру того же количества этого же вещества на многие десятки, а то и сотни градусов в тех диапазонах температур, где его агрегатное состояние не меняется. А ведь, как известно, пока агрегатное состояние всего объёма вещества не станет одним и тем же, его температура практически постоянна! Поэтому было бы очень заманчиво накапливать энергию за счёт смены агрегатного состояния - энергии накапливается много, а температура изменяется мало, так что в результате не потребуется решать проблемы, связанные с нагревом до высоких температур, и в то же время можно получить хорошую ёмкость такого теплоаккумулятора.

Плавление и кристаллизация

К сожалению, в настоящее время практически нет дешёвых, безопасных и устойчивых к разложению веществ с большой энергией фазового перехода, температура плавления которых лежала бы в наиболее актуальном диапазоне - примерно от +20°С до +50°С (максимум +70°С - это ещё относительно безопасная и легко достижимая температура). Как правило, в этом диапазоне температур плавятся сложные органические соединения, отнюдь не полезные для здоровья и зачастую быстро окисляющиеся на воздухе.

Пожалуй, наиболее подходящими веществами являются парафины, температура плавления большинства которых в зависимости от сорта лежит в диапазоне 40..65°С (правда, существуют и «жидкие» парафины с температурой плавления 27°С и менее, а также родственный парафинам природный озокерит , температура плавления которого лежит в пределах 58..100°С). И парафины, и озокерит вполне безопасны и используются в том числе и в медицинских целях для непосредственного прогрева больных мест на теле. Однако при хорошей теплоёмкости теплопроводность их весьма мала - мала настолько, что приложенный к телу парафин или озокерит, нагретый до 50-60°С, ощущается лишь приятно горячим, но не обжигающим, как это было бы с водой, нагретой до той же температуры, - для медицины это хорошо, но для теплоаккумулятора это безусловный минус. Кроме того, эти вещества не так уж дёшевы, скажем, оптовая цена на озокерит в сентябре 2009 г. составляла порядка 200 рублей за килограмм, а килограмм парафина стоил от 25 рублей (технический) до 50 и выше (высокоочищенный пищевой, т.е. пригодный для использования при упаковке продуктов). Это оптовые цены для партий в несколько тонн, в розницу всё дороже как минимум раза в полтора.

В результате экономическая эффективность парафинового теплоаккумулятора оказывается под большим вопросом, - ведь килограмм-другой парафина или озокерита годится лишь для медицинского прогрева заломившей поясницы в течении пары десятков минут, а для обеспечения стабильной температуры более-менее просторного жилища в течении хотя бы суток масса парафинового теплоаккумулятора должна измеряться тоннами, так что его стоимость сразу приближается к стоимости легкового автомобиля (правда, нижнего ценового сегмента)! Да и температура фазового перехода в идеале всё же должна точно соответствовать комфортному диапазону (20..25°С) - иначе всё равно придётся организовывать какую-то систему регулирования теплообмена. Тем не менее, температура плавления в районе 50..54°С, характерная для высокоочищенных парафинов, в сочетании с высокой теплотой фазового перехода (немногим более 200 кДж/кг) очень хорошо подходит для теплоаккумкулятора, рассчитанного на обеспечение горячего водоснабжения и водяного отопления, проблема лишь в невысокой теплопроводности и высокой цене парафина. Зато в случае форс-мажора сам парафин можно использовать в качестве топлива с хорошей теплотворной способностью (хотя сделать это не так просто - в отличии от бензина или керосина, жидкий и тем более твёрдый парафин на воздухе не горит, обязательно нужен фитиль или другое устройство для подачи в зону горения не самого парафина, а только его паров)!

Примером накопителя тепловой энергии на основе эффекта плавления и кристаллизации может служить система хранения тепловой энергии TESS на основе кремния, которую разработала австралийская компания Latent Heat Storage.

Испарение и конденсация

Теплота испарения-конденсации, как правило, в несколько раз превышает теплоту плавления-кристаллизации. И вроде бы есть не так уж мало веществ, испаряющихся в нужном диапазоне температур. Помимо откровенно ядовитых сероуглерода, ацетона, этилового эфира и т.п., есть и этиловый спирт (его относительная безопасность ежедневно доказывается на личном примере миллионами алкоголиков по всему миру!). В нормальных условиях спирт кипит при 78°С, а его теплота испарения в 2.5 раза больше теплоты плавления воды (льда) и эквивалентна нагреву того же количества жидкой воды на 200°. Однако в отличии от плавления, когда изменения объёма вещества редко превышают несколько процентов, при испарении пар занимает весь предоставленный ему объём. И если этот объём будет неограничен, то пар улетучится, безвозвратно унося с собой всю накопленную энергию. В замкнутом же объёме сразу начнёт расти давление, препятствуя испарению новых порций рабочего тела, как это имеет место в самой обычной скороварке, поэтому смену агрегатного состояния испытывает лишь небольшой процент рабочего вещества, остальное же продолжает нагреваться, находясь в жидкой фазе. Здесь открывается большое поле деятельности для изобретателей - создание эффективного теплоаккумулятора на основе испарения и конденсации с герметичным переменным рабочим объёмом.

Фазовые переходы второго рода

Помимо фазовых переходов, связанных с изменением агрегатного состояния, некоторые вещества и в рамках одного агрегатного состояния могут иметь несколько различных фазовых состояний. Смена таких фазовых состояний, как правило, также сопровождается заметным выделением или поглощением энергии, хотя обычно гораздо менее значительным, чем при изменении агрегатного состояния вещества. Кроме того, во многих случаях при подобных изменениях в отличии от смены агрегатного состояния имеет место температурный гистерезис - температуры прямого и обратного фазового перехода могут существенно различаться, иногда на десятки и даже на сотни градусов.

Электрические накопители энергии

Электричество - наиболее удобная и универсальная форма энергии в современном мире. Не удивительно, что именно накопители электрической энергии развиваются наиболее быстро. К сожалению, в большинстве случаев удельная ёмкость недорогих устройств невелика, а устройства с высокой удельной ёмкостью пока слишком дороги для хранения больших запасов энергии при массовом применении и весьма недолговечны.

Конденсаторы

Самые массовые «электрические» накопители энергии - это обычные радиотехнические конденсаторы. Они обладают огромной скоростью накопления и отдачи энергии - как правило, от нескольких тысяч до многих миллиардов полных циклов в секунду, и способны так работать в широком диапазоне температур многие годы, а то и десятилетия. Объединяя несколько конденсаторов параллельно, легко можно увеличить их суммарную ёмкость до нужной величины.

Конденсаторы можно разделить на два больших класса - неполярные (как правило, «сухие», т.е. не содержащие жидкого электролита) и полярные (обычно электролитические). Использование жидкого электролита обеспечивает существенно бóльшую удельную ёмкость, но почти всегда требует соблюдения полярности при подключении. Кроме того, электролитические конденсаторы часто более чувствительные к внешним условиям, прежде всего к температуре и имеют меньший срок службы (с течением времени электролит улетучивается и высыхает).

Однако у конденсаторов есть два основных недостатка. Во-первых, это весьма малая удельная плотность запасаемой энергии и потому небольшая (относительно других видов накопителей) ёмкость. Во-вторых, это малое время хранения, которое обычно исчисляется минутами и секундами и редко превышает несколько часов, а в некоторых случаях составляет лишь малые доли секунды. В результате область применения конденсаторов ограничивается различными электронными схемами и кратковременным накоплением, достаточным для выпрямления, коррекции и фильтрации тока в силовой электротехнике - на большее их пока не хватает.

Которые иногда называют «суперконденсаторами», можно рассматривать как своего рода промежуточное звено между электролитическими конденсаторами и электрохимическими аккумуляторами. От первых они унаследовали практически неограниченное количество циклов заряда-разряда, а от вторых - относительно невысокие токи зарядки и разрядки (цикл полной зарядки-разрядки может длиться секунду, а то и намного дольше). Ёмкость их также находится в диапазоне между наиболее ёмкими конденсаторами и небольшими аккумуляторами - обычно запас энергии составляет от единиц до нескольких сотен джоулей.

Дополнительно следует отметить достаточно высокую чувствительность ионисторов к температуре и ограниченное время хранения заряда - от нескольких часов до нескольких недель максимум.

Электрохимические аккумуляторы

Электрохимические аккумуляторы были изобретены ещё на заре развития электротехники, и сейчас их можно встретить повсюду - от мобильного телефона до самолётов и кораблей. Вообще говоря, они работают на основе некоторых химических реакций и поэтому их можно было бы отнести к следующему разделу нашей статьи -«Химические накопители энергии». Но поскольку этот момент обычно не подчеркивается, а обращается внимание на то, что аккумуляторы накапливают электричество, рассмотрим их здесь.

Как правило, при необходимости запасать достаточно большую энергию - от нескольких сотен килоджоулей и более - используются свинцово-кислотные аккумуляторы (пример - любой автомобиль). Однако они имеют немалые габариты и, главное, вес. Если же требуется малый вес и мобильность устройства, то используются более современные типы аккумуляторов - никель-кадмиевые, металл-гидридные, литий-ионные, полимер-ионные и др. Они имеют гораздо более высокую удельную ёмкость, однако и удельная стоимость хранения энергии у них заметно выше, поэтому их применение обычно ограничивается относительно небольшими и экономичными устройствами, такими как мобильные телефоны, фото- и видеокамеры, ноутбуки и т.п.

В последнее время на гибридных автомобилях и электромобилях начали применяться мощные литий-ионные аккумуляторы. Помимо меньшего веса и большей удельной ёмкости, в отличие от свинцово-кислотных они позволяют практически полностью использовать свою номинальную ёмкость, считаются более надёжными и имеющими бóльший срок службы, а их энергетическая эффективность в полном цикле превышает 90%, в то время как энергетическая эффективность свинцовых аккумуляторов при заряде последних 20% ёмкости может падать до 50%.

По режиму использования электрохимические аккумуляторы (прежде всего мощные) также подразделяются на два больших класса - так называемые тяговые и стартовые. Обычно стартовый аккумулятор достаточно успешно может работать в качестве тягового (главное - контролировать степень разряда и не доводить его до такой глубины, которая допустима для тяговых аккумуляторов), а вот при обратном применении слишком большой ток нагрузки может очень быстро вывести тяговый аккумулятор из строя.

К недостаткам электрохимических аккумуляторов можно отнести весьма ограниченное число циклов заряда-разряда (в большинстве случаев от 250 до 2000, а при несоблюдении рекомендаций производителей - гораздо меньше), и даже при отсутствии активной эксплуатации большинство типов аккумуляторов через несколько лет деградируют, утрачивая свои потребительские свойства. При этом срок службы многих видов аккумуляторов идёт не с начала их эксплуатации, а с момента изготовления. Кроме того, для электрохимических аккумуляторов характерны чувствительность к температуре, длительное время заряда, иногда в десятки раз превышающее время разряда, и необходимость соблюдения методики использования (недопущение глубокого разряда для свинцовых аккумуляторов и, наоборот, соблюдение полного цикла заряда-разряда для металл-гидридных и многих других типов аккумуляторов). Время хранения заряда также довольно ограничено - обычно от недели до года. У старых аккумуляторов уменьшается не только ёмкость, но и время хранения, причём и то, и другое может сократиться во много раз.

Химические накопители энергии

Химическая энергия - это энергия, «запасенная» в атомах веществ, которая высвобождается или поглощается при хими­ческих реакциях между веществами. Химическая энергия либо выделяется в виде тепловой при проведении экзотермических реакций (например, горении топлива), либо преобразуется в электрическую в гальваничес­ких элементах и аккумуляторах. Эти источники энергии ха­рактеризуются высоким КПД (до 98 %), но низкой емкостью.

Химические накопители энергии позволяют получать энергию как в том виде, из которого она запасалась, так и в любом другом. Можно выделить «топливные» и «безтопливные» разновидности. В отличии от низкотемпературных термохимических накопителей (о них чуть позже), которые могут запасти энергию, просто будучи помещёнными в достаточно тёплое место, здесь не обойтись без специальных технологий и высокотехнологичного оборудования, иногда весьма громоздкого. В частности, если в случае низкотемпературных термохимических реакций смесь реагентов обычно не разделяется и всегда находится в одной и той же ёмкости, реагенты для высокотемпературных реакций хранятся отдельно друг от друга и соединяются лишь тогда, когда нужно получить энергию.

Накопление энергии наработкой топлива

На этапе накопления энергии происходит химическая реакция, в результате которой восстанавливается топливо, например, из воды выделяется водород - прямым электролизом, в электрохимических ячейках с использованием катализатора или с помощью термического разложения, скажем, электрической дугой или сильно сконцентрированным солнечным светом. «Освободившийся» окислитель может быть собран отдельно (для кислорода это необходимо в условиях замкнутого изолированного объекта - под водой или в космосе) либо за ненадобностью «выброшен», поскольку в момент использования топлива этого окислителя будет вполне достаточно в окружающей среде и нет необходимости тратить место и средства на его организованное хранение.

На этапе извлечения энергии наработанное топливо окисляется с выделением энергии непосредственно в нужной форме, независимо от того, каким способом было получено это топливо. Например, водород может дать сразу тепло (при сжигании в горелке), механическую энергию (при подаче его в качестве топлива в двигатель внутреннего сгорания или турбину) либо электричество (при окислении в топливной ячейке). Как правило, такие реакции окисления требуют дополнительной инициации (поджига), что весьма удобно для управления процессом извлечения энергии.

Накопление энергии с помощью термохимических реакций

Давно и широко известна большая группа химических реакций, которые в закрытом сосуде при нагревании идут в одну сторону с поглощением энергии, а при охлаждении - в обратную с выделением энергии. Такие реакции часто называют термохимическими . Энергетическая эффективность таких реакций, как правило, меньше, чем при смене агрегатного состояния вещества, однако тоже весьма заметна.

Подобные термохимические реакции можно рассматривать как своего рода смену фазового состояния смеси реагентов, и проблемы здесь возникают примерно те же - трудно найти дешёвую, безопасную и эффективную смесь веществ, успешно действующую подобным образом в диапазоне температур от +20°С до +70°С. Впрочем, один подобный состав известен уже давно - это глауберова соль.

Мирабилит (он же глауберова соль, он же десятиводный сульфат натрия Na 2 SO 4 · 10H 2 O) получают в результате элементарных химических реакций (например, при добавлении поваренной соли в серную кислоту) или добывают в «готовом виде» как полезное ископаемое.

С точки зрения аккумуляции тепла наиболее интересная особенность мирабилита заключается в том, что при повышении температуры выше 32°С связанная вода начинает освобождаться, и внешне это выглядит как «плавление» кристаллов, которые растворяются в выделившейся из них же воде. При снижении температуры до 32°С свободная вода вновь связывается в структуру кристаллогидрата - происходит «кристаллизация». Но самое главное - теплота этой реакции гидратации-дегидратации весьма велика и составляет 251 кДж/кг, что заметно выше теплоты «честного» плавления-кристаллизации парафинов, хотя и на треть меньше, чем теплота плавления льда (воды).

Таким образом, теплоаккумулятор на основе насыщенного раствора мирабилита (насыщенного именно при температуре выше 32°С) может эффективно поддерживать температуру на уровне 32°С с большим ресурсом накопления или отдачи энергии. Конечно, для полноценного горячего водоснабжения эта температура слишком низка (душ с такой температурой в лучшем случае воспринимается как «весьма прохладный»), но вот для подогрева воздуха такой температуры может оказаться вполне достаточно.

Подробнее о теплоаккумуляторе на основе мирабилита можно прочитать на сайте «DelaySam.ru» .

Безтопливное химическое накопление энергии


Банка кофе с разогревом за счёт гашения извести .

В данном случае на этапе «зарядки» из одних химических веществ образуются другие, и в ходе этого процесса в образующихся новых химических связях запасается энергия (скажем, гашёная известь при помощи нагрева переводится в негашёное состояние).

При «разрядке» происходит обратная реакция, сопровождаемая выделением ранее запасённой энергии (обычно в виде тепла, иногда дополнительно в виде газа, который можно подать в турбину) - в частности, именно это имеет место при «гашении» извести водой. В отличие от топливных методов, для начала реакции обычно достаточно просто соединить реагенты друг с другом - дополнительная инициация процесса (поджиг) не требуется.

По сути, это разновидность термохимической реакции, однако в отличии от низкотемпературных реакций, описанных при рассмотрении тепловых накопителей энергии и не требующих каких-то особых условий, здесь речь идёт о температурах в многие сотни, а то и тысячи градусов. В результате количество энергии, запасаемой в каждом килограмме рабочего вещества, существенно возрастает, но и оборудование во много раз сложнее, объёмнее и дороже, чем пустые пластиковые бутылки или простой бак для реагентов.

Необходимость расхода дополнительного вещества - скажем, воды для гашения извести - не является существенным недостатком (при необходимости можно собрать воду, выделяющуюся при переходе извести в негашёное состояние). А вот особые условия хранения этой самой негашёной извести, нарушение которых чревато не только химическими ожогами, но и взрывом, переводят этот и ему подобные способы в разряд тех, которые вряд ли выйдут в широкую жизнь.

Другие типы накопителей энергии

Помимо описанных выше, есть и другие типы накопителей энергии. Однако в настоящее время они весьма ограничены по плотности запасаемой энергии и времени её хранения при высокой удельной стоимости. Поэтому пока они больше применяются для развлечения, а их эксплуатация в сколько-нибудь серьёзных целях не рассматривается. Примером являются фосфорецирующие краски, запасающие энергию от яркого источника света и затем светящиеся в течение нескольких секунд, а то и долгих минут. Их современные модификации уже давно не содержат ядовитого фосфора и вполне безопасны даже для использования в детских игрушках.

Суперпроводящие накопители магнитной энергии хранят её в поле большой магнитной катушки с постоянным током. Она может быть преобразована в переменный электрический ток по мере необходимости. Низкотемпературные накопители охлаждаются жидким гелием и доступны для промышленных предприятий. Высокотемпературные накопители, охлаждаемые жидким водородом, всё ещё находятся в стадии разработки и могут стать доступны в будущем.

Суперпроводящие накопители магнитной энергии имеют значительные размеры и обычно используются в течение коротких периодов времени, например, во время переключений.

Скорее всего в этой статье отражены не все возможные способы накопления и сохранения энергии. Вы можете сообщить о других вариантах либо в комментариях, либо электронным письмом на адрес kos at altenergiya dot ru.

Похожие публикации