Различия цветовых моделей RGB, CMYK, HSB. Цветовая модель HSB

Тема урока «Палитры цветов в системах цветопередачи RGB, SMYK, HSB»

9 класс

1 час учебного времени

Тип урока: ознакомление с новым материалом

Вид урока: смешанный

Технология: личностно-ориентированная, развивающая

На момент проведения урока учащиеся должны

знать:

    единицы измерения информации

    понятие пространственной дискретизации

    формулу связи количества цветов в палитре и количества информации

    графические режимы экрана монитора

уметь :

    осуществлять перевод единиц информации

    определять количество графической информации

    кратко конспектировать основные моменты лекции

Цели урока:

    проверить уровень освоения материала прошлого урока

    сформировать представление о восприятии цвета человеком

    познакомится с процессом разложения цветов на составляющие .

    рассмотреть особенности цветопередачи экранами мониторов

    рассмотреть отличия в палитрах цветов в разных системах цветопередач

    закрепить умения по нахождению глубины цвета и объема изображения.

Задачи урока:

Образовательная: закрепить знания на определение глубины цвета, количества цветов,научить определять цвета по заданной интенсивности базовых цветов, научить определять цвета, если имеются краски в системе цветопередачи RGB , CMYK.

воспитательная : формирование общекультурных навыков работы с графической информацией, формирование информационной культуры, воспитывать внимательность, аккуратность, самостоятельность;

развивающая : развивать алгоритмическое мышление; навыки использования прикладного программного обеспечения; умение решать информационные задачи .

В результате изучения данной темы учащиеся должны

знать:

    палитры цветов в различных системах цветопередачи

уметь:

определять цвета, если имеются краски в системе цветопередачи RGB ,CMYK.

Комплексно-методическое обеспечение:

    интерактивная доска;

    материалы для проверки домашнего задания (информационный диктант)

    презентация “Палитры цветов в системах цветопередачи RGB , SMYK , HSB ” учебник Н.Д. Угриновича для 9 класса § 1.5

План урока:

    Организационный момент (2 мин).

    Проверка домашнего задания (20 мин). Д иктант «Основные понятия компьютерной графики» и решение задач у доски

    Новый материал (15 мин).

    Закрепление изученного материала: ответы на вопросы (5 мин)

    Подведение итогов (2 мин)

    Домашнее задание (1 мин).

Ход урока

1. Организационный момент

Приветствие, кто отсутствует

2. Проверка домашнего задания

Д иктант «Основные понятия компьютерной графики» (учащиеся записывают понятие)

1. Минимальный участок изображения, для которого независимо можно задать цвет, называется ПИКСЕЛЬ

2. Чем разрешающая способность ниже, тем размер пикселя БОЛЬШЕ

3. Чем ниже разрешающая способность, тем качество изображения НИЖЕ
4.
Завершите фразу: Сканер имеет аппаратное и оптическое .. РАЗРЕШЕНИЕ

5. Количество информации, которое используется для кодирования цвета точки, называется ГЛУБИНА

6. При помощи этого устройства можно осуществлять процесс пространственной дискретизации. СКАНЕР

7 . Этот вид информации может быть представлен в двух формах: аналоговой и дискретной. ГРАФИЧЕСКАЯ

Решение задачи у доски (2 учащихся). Задачи отображены на интерактивной доске:

1. Определите количество цветов в палитре при глубине цвета 4, 8, 16, 24, 32 бита. Разрешается пользоваться компьютерным калькулятором.

2. Цветное растровое изображение с палитрой 65536 цветов имеет размер 100х100 точек. Какой информационный объём имеет это изображение?

3. Для хранения изображения размером 64х32 точек выделено 64 кбайт памяти. Каково максимально возможное число цветов в палитре изображения?

4. 256- цветный рисунок содержит 10 байт информации. Из скольких точек он состоит?

Актуализация знаний (фронтальный опрос):

- Вспоминая ранее изученную тему «Кодирование графической информации», ответьте, пожалуйста, на вопрос: Каким образом графическая информация представляется в компьютере?

С помощью какой формулы мы можем вычислить информационный объём графического изображения?

- Назовите две основные формы представления графической информации.

3. Мотивация

Вспомним курс физики. На какие цвета спектра может быть разложен белый цвет?

Учащиеся вспоминают оптические приборы и цвета радуги.

Тема нашего урока " Палитры цветов в системах цветопередачи RGB , CMYK , HSB

( Презентация 1 слайд 1 ).

4. Изучение нового материала

Как устроено световосприятие для человека?

( Человек воспринимает цвет с помощью рецепторов – колбочек. Наибольшая чувствительность приходится на красный, зеленый и синий цвета, сумма которых в разных сочетаниях дает оттенки ) . ( слайд 2-3 ).

Сегодня мы узнаем, как осуществляется цветопередача при помощи компьютеров.

Нам известны следующие системы цветопередачи: (слайд 4 ).

С экрана компьютера мы так же воспринимаем цвета как сочетания базовых цветов – красный, синий и зеленый. Такая система называется по первым буквам базовых цветов на английском языке – red R , green G , blue B RGB . (слайд 5-6)

Наложение цветов друг на друга дает нам другие оттенки.

Учащиеся работают со сладом по формированию оттенков из базовых цветов . (слайд 7-8)

Где применяется система RGB (слайд 9)

Рассматривается палитра SMYK (слайд 10-13)

Где применяется система SMYK (слайд 14)

Рассматривается палитра HSB и формирование цветов в этой палитре (слайд 16-17)

5. Закрепление изученного материала

Учащимся предлагается ответить на вопросы по пройденному материалу (слайд 18)

6. Подведение итогов урока

Выставление оценок, запись домашнего задания (слайд 16 )

Другой метод создания цвета (модель HSB) заключается в выборе основного цвета из непрерывного цветового ряда (Hue - оттенок) с последующей настройкой насыщенности (Saturation) и яркости (Brightness). Насыщенность регулируется изменением содержания в цвете белой компоненты, а яркость - черной. Модель HSB является вариантом модели RGB и также базируется на использовании базовых цветов. Из всех используемых в настоящее время моделей эта модель наиболее точно соответствует способу восприятия цвета человеческим глазом.

Цветовая модель HSB является наиболее простой для понимания. Она равно применима и для аддитивных, и для субтрактивных цветов. HSB - это трехканальная модель цвета, так как представлена тремя компонентами (тон, насыщенность и яркость). Спектральные цвета располагаются на цветовом круге. Цветовой тон характеризуется положением на цветовом круге (построен на основе цветового круга Манселла) и определяется величиной угла в диапазоне от 0 до 360 градусов. По краю цветового круга располагаются максимально насыщенные цвета (100 %), а по мере перемещения к центру круга их насыщенность уменьшается до минимума (0 %). Цвет с уменьшением насыщенности осветляется, как будто к нему прибавляют белую краску. При значении насыщенности 0 % в центре круга любой цвет становится белым. Все цвета цветового круга имеют максимальную яркость (100 %) и ярче уже быть не могут (рис. 3.8).

Рисунок 3.8. Цветовая модель HSB

Яркость можно уменьшить на отдельной оси, называемой ахроматической, при этом нулевая (нижняя) точка оси соответствует черному цвету.

Существуют хроматические и ахроматические цвета (рис. 3.9). К ахроматическим цветам относятся: белый, черный и вся шкала серых между ними. Они не имеют цветового тона. К хроматическим цветам относятся все остальные цвета, отличные от белого, серого или черного.

Рисунок 3.9. Хроматические (слева) и ахроматические (справа) цвета

Степень хроматичности цвета определяется насыщенностью (степенью удаленности цвета от серого той же светлоты). Цвета с максимальной насыщенностью - спектральные цвета. Минимальная насыщенность дает полную ахроматику (отсутствие цветового тона). Чем ниже насыщенность, тем более серым выглядит цвет. При нулевой насыщенности цвет становится серым.

Модель HSB охватывает все известные значения реальных цветов, поэтому ее используют при создании изображений на компьютере с имитацией приемов работы и инструментария художников. Яркость - это параметр цвета, характеризующий освещенность или затемненность цвета. Она определяется степенью отражения от физической поверхности, на которую падает свет. Чем выше яркость, тем светлее цвет. Яркость показывает величину черного оттенка, добавленного к цвету, что делает его более темным. Таким образом, цветовой тон является эквивалентом длины волны света, насыщенность - интенсивности волны, а яркость - общего количества света.


Помимо цветового тона, насыщенности и яркости, при работе с цветом важной характеристикой изображения является контраст. Это понятие относится к яркостному соотношению между светлыми и темными областями изображения. При повышении контраста светлые области становятся еще светлее, а темные - еще темнее. При понижении контраста разница в тоне между более светлыми и более темными областями уменьшается. Один и тот же цвет воспринимается по-разному в зависимости от соседних цветов. Поэтому различают контраст цветового тона, контраст светлости и контраст цветности.

Модель HLS (Hue - оттенок, Lightness - осветление, Saturation - насыщенность) является вариантом модели HSB. В этих моделях цветовые параметры оттенок и насыщенность являются общими. Различие состоит в замене нелинейного компонента Brightness (яркость) на линейный компонент Lightness (интенсивность), который изменяется в диапазоне от 0 до 100 процентов.

Цветовые модели CIE XYZ и CIE L*a*b

Международной комиссией по освещению (CIE) были разработаны цветовые модели CIE XYZ и CIE L*a*b. Достоинством этих моделей является независимость от способа производства цвета, в их системе измерения можно описывать как субтрактивные цвета печати, так и аддитивные цвета, излучаемые монитором. Поэтому эти модели используются для того чтобы определять аппаратно независимые цвета, которые могут правильно воспроизводиться устройствами любого типа - сканерами, мониторами или принтерами.

CIE разработала цветовую систему XYZ , называемую также «нормальной цветовой системой». Эта система часто представляется в виде двухмерного графика, который более или менее похож на парус (рис. 3.10).

Рисунок 3.10. Цветовая модель CIE XYZ

Красные компоненты цвета вытянуты вдоль оси Х координатной плоскости, а зеленые компоненты цвета вытянуты вдоль оси Y. При таком способе представления каждому цвету соответствует определенная точка на координатной плоскости. Спектральная чистота цветов уменьшается по мере перемещения по координатной плоскости влево. Но в этой модели не учитывается яркость.

В 1920 году была разработана цветовая пространственная модель CIE L*a*b* (Communication Internationale de I"Eclairage - международная комиссия по совещанию; L, a, b - обозначения осей координат в этой системе). CIE L*a*b* представляет собой улучшенную цветовую модель CIE XYZ. L*a*b* - трехканальная цветовая модель. Любой цвет данной модели определяется светлотой (L) и двумя хроматическими компонентами: параметром a, который изменяется в диапазоне от зеленого до красного, и параметром b, изменяющимся в диапазоне от синего до желтого (рис. 3.11).

Рисунок 3.11. Цветовая модель CIEL*a*b*

Система является аппаратно независимой и потому часто применяется для переноса данных между устройствами. Цветовой охват модели CIE Lab значительно превосходит возможности мониторов и печатных устройств, поэтому перед выводом изображения, представленного в этой модели, его приходится преобразовывать. Данная модель была разработана для согласования цветных фотохимических процессов с полиграфическими.

По сравнению с цветовой моделью XYZ цвета CIE L*a*b* более совместимы с цветами, воспринимаемыми человеческим глазом. Модель CIE L*a*b* используется некоторыми программами (например, Adobe Photoshop) в качестве модели-посредника при любом конвертировании из модели в модель, а также при конвертировании цветного изображения в оттенки серого.

HEX / HTML

Цвет в формате HEX - это ни что иное, как шестнадцатеричное представление RGB.

Цвета представляются в виде трёх групп шестнадцатеричных цифр, где каждая группа отвечает за свой цвет: #112233, где 11 - красный, 22 - зелёный, 33 - синий. Все значения должны быть между 00 и FF.

Во многих приложениях допускается сокращённая форма записи шестнадцатеричных цветов. Если каждая из трёх групп содержит одинаковые символы, например #112233, то их можно записать как #123.

  1. h1 { color: #ff0000; } /* красный */
  2. h2 { color: #00ff00; } /* зелёный */
  3. h3 { color: #0000ff; } /* синий */
  4. h4 { color: #00f; } /* тот же синий, сокращённая запись */

RGB

Цветовое пространство RGB (Red, Green, Blue) состоит из всех возможных цветов, которые могут быть получены путём смешивания красного, зелёного, и синего. Эта модель популярна в фотографии, телевидении, и компьютерной графике.

Значения RGB задаются целым числом от 0 до 255. Например, rgb(0,0,255) отображается как синий, так как синий параметр установлен в его самое высокое значение (255), а остальные установлены в 0.

Некоторые приложения (в частности веб-браузеры) поддерживают процентную запись значений RGB (от 0% до 100%).

  1. h1 { color: rgb(255, 0, 0); } /* красный */
  2. h2 { color: rgb(0, 255, 0); } /* зелёный */
  3. h3 { color: rgb(0, 0, 255); } /* синий */
  4. h4 { color: rgb(0%, 0%, 100%); } /* тот же синий, процентная запись */

Цветовые значения RGB поддерживаются во всех основных браузерах.

RGBA

С недавних пор современные браузеры научились работать с цветовой моделью RGBA - расширением RGB с поддержкой альфа-канала, который определяет непрозрачность объекта.

Значение цвета RGBA задается в виде: rgba(red, green, blue, alpha). Параметр alpha - это число в диапазоне от 0.0 (полностью прозрачный) до 1.0 (полностью непрозрачный).

  1. h1 { color: rgb(0, 0, 255); } /* синий в обычном RGB */
  2. h2 { color: rgba(0, 0, 255, 1); } /* тот же синий в RGBA, потому как непрозрачность: 100% */
  3. h3 { color: rgba(0, 0, 255, 0.5); } /* непрозрачность: 50% */
  4. h4 { color: rgba(0, 0, 255, .155); } /* непрозрачность: 15.5% */
  5. h5 { color: rgba(0, 0, 255, 0); } /* полностью прозрачный */

RGBA поддерживается в IE9+, Firefox 3+, Chrome, Safari, и в Opera 10+.

HSL

Цветовая модель HSL является представлением модели RGB в цилиндрической системе координат. HSL представляет цвета более интуитивным и понятным для восприятия образом, чем типичное RGB. Модель часто используется в графических приложениях, в палитрах цветов, и для анализа изображений.

HSL расшифровывается как Hue (цвет/оттенок), Saturation (насыщенность), Lightness/Luminance (светлота/светлость/светимость, не путать с яркостью).

Hue задаёт положение цвета на цветовом круге (от 0 до 360). Saturation является процентным значением насыщенности (от 0% до 100%). Lightness является процентным значением светлости (от 0% до 100%).

  1. h1 { color: hsl(120, 100%, 50%); } /* зелёный */
  2. h2 { color: hsl(120, 100%, 75%); } /* светло-зелёный */
  3. h3 { color: hsl(120, 100%, 25%); } /* тёмно-зелёный */
  4. h4 { color: hsl(120, 60%, 70%); } /* пастельный зеленый */

HSL поддерживается в IE9+, Firefox, Chrome, Safari, и в Opera 10+.

HSLA

По аналогии с RGB/RGBA, для HSL имеется режим HSLA с поддержкой альфа-канала для указания непрозрачности объекта.

Значение цвета HSLA задается в виде: hsla(hue, saturation, lightness, alpha). Параметр alpha - это число в диапазоне от 0.0 (полностью прозрачный) до 1.0 (полностью непрозрачный).

  1. h1 { color: hsl(120, 100%, 50%); } /* зелёный в обычном HSL */
  2. h2 { color: hsla(120, 100%, 50%, 1); } /* тот же зелёный в HSLA, потому как непрозрачность: 100% */
  3. h3 { color: hsla(120, 100%, 50%, 0.5); } /* непрозрачность: 50% */
  4. h4 { color: hsla(120, 100%, 50%, .155); } /* непрозрачность: 15.5% */
  5. h5 { color: hsla(120, 100%, 50%, 0); } /* полностью прозрачный */

CMYK

Цветовая модель CMYK часто ассоциируется с цветной печатью, с полиграфией. CMYK (в отличие от RGB) является субтрактивной моделью, это означает что более высокие значения связаны с более тёмными цветами.

Цвета определяются соотношением голубого (Cyan), пурпурного (Magenta), жёлтого (Yellow), с добавлением чёрного (Key/blacK).

Каждое из чисел, определяющее цвет в CMYK, представляет собой процент краски данного цвета, составляющей цветовую комбинацию, а точнее, размер точки растра, выводимой на фотонаборном аппарате на плёнке данного цвета (или прямо на печатной форме в случае с CTP).

Например, для получения цвета «PANTONE 7526» следует смешать 9 частей голубой краски, 83 частей пурпурной краски, 100 - жёлтой краски, и 46 - чёрной. Это можно обозначить следующим образом: (9,83,100,46). Иногда пользуются такими обозначениями: C9M83Y100K46, или (9%, 83%, 100%, 46%), или (0,09/0,83/1,0/0,46).

HSB / HSV

HSB (также известна как HSV) похожа на HSL, но это две разные цветовые модели. Они обе основаны на цилиндрической геометрии, но HSB/HSV основана на модели «hexcone», в то время как HSL основана на модели «bi-hexcone». Художники часто предпочитают использовать эту модель, принято считать что устройство HSB/HSV ближе к естественному восприятию цветов. В частности, цветовая модель HSB применяется в Adobe Photoshop.

HSB/HSV расшифровывается как Hue (цвет/оттенок), Saturation (насыщенность), Brightness/Value (яркость/значение).

Hue задаёт положение цвета на цветовом круге (от 0 до 360). Saturation является процентным значением насыщенности (от 0% до 100%). Brightness является процентным значением яркости (от 0% до 100%).

XYZ

Цветовая модель XYZ (CIE 1931 XYZ) является чисто математическим пространством. В отличие от RGB, CMYK, и других моделей, в XYZ основные компоненты являются «мнимыми», то есть вы не можете соотнести X, Y, и Z с каким-либо набором цветов для смешивания. XYZ является мастер-моделью практически всех остальных цветовых моделей, используемых в технических областях.

LAB

Цветовая модель LAB (CIELAB, «CIE 1976 L*a*b*») вычисляется из пространства CIE XYZ. При разработке Lab преследовалась цель создания цветового пространства, изменение цвета в котором будет более линейным с точки зрения человеческого восприятия (по сравнению с XYZ), то есть с тем, чтобы одинаковое изменение значений координат цвета в разных областях цветового пространства производило одинаковое ощущение изменения цвета.


Палитры цветов в системах цветопередачи R G B , C M Y K и HSB



Как человек воспринимает цвет?

Человек воспринимает свет с помощью цветовых рецепторов (колбочек), находящихся на сетчатке глаза.

Колбочки чувствительны к красному, зеленому и синему цветам (базовые цвета).


Сумма красного, зеленого и синего цветов воспринимается человеком как белый .

Их отсутствие - как черный , а различные их сочетания - как многочисленные оттенки цветов .


Исходя из особенностей физиологии восприятия цвета, с экрана монитора человек лучше всего воспринимает цвет как сумму излучения трех базовых цветов: красный, зеленый, синий.

Такая система цветопередачи называется RGB, по первым буквам английских названий цветов (Red , Green , Blue).


Цвет из палитры можно определить с помощью формулы:

Color = R + G + B

R, G, B – базовые цвета, которые принимают значения от 0 до 255

Так при глубине цвета в 24 бита на кодирование каждого из базовых цветов выделяется по 8 бит, тогда для каждого из цветов возможны N=2 8 =256 уровней интенсивности.


Формирование цвета в R G B

Цвет

Формирование цвета

255 + 255 + 255

Пурпурный

В системе RGB палитра цветов формируется путем сложения базовых цветов: красного, зеленого и синего.



Пурпурный

Система CMYK в отличие от RGB , основана на восприятии не излучаемого, а отражаемого света.

Так, нанесенная на бумагу голубая краска поглощает красный цвет и отражает зеленый и синий цвета.

Цвета палитры можно определить с помощью формулы:

Color = C + M + Y

C, M и Y – цвета палитры, которые принимают значения от 0 % до 100%


Формирование цвета в C M Y K

Цвет

Формирование цвета

С + M +Y = - G - B – R

Y +C = - R - B

В системе цветопередачи CMYK палитра цветов формируется путем наложения голубой, пурпурной, желтой и черной красок.


  • Hue (оттенок цвета)
  • Saturation (насыщенность)
  • Brightness (яркость)

Палитры цветов в системах цветопередачи R G B , C M Y K и HSB

Цветовые модели HSV и HLS. Рассмотренные модели ориентированы на работу с цветопередающей аппаратурой и для некоторых людей неудобны. Поэтому модели HSV, HLS опираются на интуитивные понятия тона насыщенности и яркости.

В цветовом пространстве модели HSV (Hue, Saturation, Value), иногда называемой HSB (Hue, Saturation, Brightness), используется цилиндрическая система координат, а множество допустимых цветов представляет собой шестигранный конус, поставленный на вершину.

Основание конуса представляет яркие цвета и соответствует V = 1. Однако цвета основания V = 1 не имеют одинаковой воспринимаемой интенсивности. Тон (H ) измеряется углом, отсчитываемым вокруг вертикальной оси OV . При этом красному цвету соответствует угол 0°, зелёному – угол 120° и т. д. Цвета, взаимно дополняющие друг друга до белого, находятся напротив один другого, т. е. их тона отличаются на 180°. Величина S изменяется от 0 на оси OV до 1 на гранях конуса.

Конус имеет единичную высоту (V = 1) и основание, расположенное в начале координат. В основании конуса величины H и S смысла не имеют. Белому цвету соответствует пара S = 1, V = 1. Ось OV (S = 0) соответствует ахроматическим цветам (серым тонам).

Процесс добавления белого цвета к заданному можно представить как уменьшение насыщенности S , а процесс добавления чёрного цвета – как уменьшение яркости V . Основанию шестигранного конуса соответствует проекция RGB куба вдоль его главной диагонали.

Рис. 1.8. Цветовое пространство HSV модели

Еще одним примером системы, построенной на интуитивных понятиях тона насыщенности и яркости, является система HLS ( Hue , Lightness , Saturation ). Здесь множество всех цветов представляет собой два шестигранных конуса, поставленных друг на друга (основание к основанию).

Модель HLS HLS (Hue, Lightness, Saturation - цветовой тон, освещённость, насыщенность) - модель ориентированная на человека и обеспечивающая возможность явного задания требуемого оттенка цвета/ Эта модель образует подпространство, представляющее собой двойной конус, в котором черный цвет задается вершиной нижнего конуса и соответствует значению L = 0, белый цвет максимальной интенсивности задается вершиной верхнего конуса и соответствует значению L = 1. Максимально интенсивные цветовые тона соответствуют основанию конусов с L = 0.5, что не совсем удобно. Цветовой тон H, аналогично системе HSV, задается углом поворота. Насыщенность S меняется в пределах от 0 до 1 и задается расстоянием от вертикальной оси L до боковой поверхности конуса. Т.е. максимально насыщенные цветовые цвета располагаются при L=0.5, S=1. В общем, систему HLS можно представить как полученную из HSV "вытягиванием" точки V=1, S=0, задающей белый цвет, вверх для образования верхнего конуса.

    H - тон

    S - насыщенность

    L - светлота (освещённость)

В некоторых графических редакторах, например, в Macromedia FreeHand используется модель HLS . В модели HLS, в отличие от HSB, вместо яркости используется параметрL- освещенность (Lightness). Уменьшение освещенности приближает цвет к черному, а увеличение - к белому. Чистый спектральный цвет получается при освещенности 50%.

Модели HSBиHLSне ориентированы ни на какое техническое устройство воспроизведения цветов, поэтому их называют ещеаппаратно независимыми .

Рис. 5: Цветовая модель HLS

Светлота (lightness) - одна из основных характеристик цвета наряду снасыщенностьюитоном. Это субъективная яркость участка изображения, отнесённая к субъективнойяркостиповерхности, воспринимаемой человеком какбелая.

Светлота

Субъективная яркость участка

Субъективная яркость белого

Важно отметить именно относительность восприятия. Если посмотреть на лист с изображением на бумаге при свете лампы и при ярком солнечном свете, количество отражённого света от участка изображения (яркость) будет различаться, однако относительно самого светлого участка поверхности - незапечатанной белой бумаги, воспринимаемая светлота будет одной и той же.

Тон - одна из трёх основных характеристикцветанаряду снасыщенностьюисветлотой. Тон определяется характером распределения излучения в спектре видимого света, причём, главным образом, положением пика излучения, а не его интенсивностью и характером распределения излучения в других областях спектра. Именно тон определяет название цвета, например «красный», «синий», «зелёный».

Н асыщенность - этоинтенсивностьопределённоготона, то есть степень визуального отличия хроматического цвета от равного по светлоте ахроматического (серого) цвета. Насыщенный цвет можно назвать сочным, глубоким, менее насыщенный - приглушённым, приближённым к серому. Полностью ненасыщенный цвет будет оттенком серого. Насыщенность (saturation) - одна из трёх координат в цветовых пространствахHSLиHSV.

Цветовые модели HSB и HLS

Многие художники пользуются цветовой моделью HSB. Это не строгая математическая модель, но она очень удобна для подбора оттенков и цветов. Эта модель основана на модели RGB, но имеет другую систему координат. Любой цвет в модели HSB определяется своим цветовым тоном (собственно цветом), насыщенностью (то есть процентом добавленной к цвету белой краски) и яркостью (процентом добавленной черной краски). Такая модель получила название по первым буквам английских слов H ue - тон, S aturation - насыщенность и B rightness - яркость. Это трехканальная модель (рис. 3.).

Все оттенки располагаются по кругу, и каждому соответствует свой градус, т.е. всего насчитывается 360 вариантов (красный - 0, желтый - 60, зеленый - 120 градусов и т.д.). Более точной графической интерпретацией данной модели будет конус. Такая цветовая модель намного беднее, рассмотренной ранее RGB, так как позволяет работать всего лишь с 3 млн. цветов.

Модель HSB лучше, чем RGB и CMYK, соответствует понятию цвета, которое используют маляры и профессиональные художники. Действительно, у них обычно есть несколько основных красок, а все другие получаются добавлением к ним белой и черной. Таким образом, нужные цвета - это некоторая модификация основных: осветленных или затемненных. Хотя художники и смешивают краски, но это уже выходит за рамки модели HSB

Насыщенность характеризует чистоту цвета. Нулевая насыщенность соответствует серому цвету, а максимальная насыщенность - наиболее яркому варианту данного цвета. Можно считать, что изменение насыщенности связано с добавлением белой краски. То есть уменьшение насыщенности соответствует добавлению белой краски.

Яркость понимается как степень освещенности. При нулевой яркости цвет становится черным. Максимальная яркость при максимальной насыщенности дают наиболее выразительный вариант данного цвета. Можно также считать, что яркость изменяется путем добавления черной краски. Чем больше черной краски добавлено, тем меньше яркость.

Графически модель HSB можно представить в виде кольца, вдоль которого располагаются оттенки цветов. На внешнем крае круга находятся чистые спектральные цвета или цветовые тона (параметр Н в угловых градусах). Чем ближе к центру круга расположен цвет, тем меньше его насыщенность, тем он более блеклый, пастельный (параметр S в процентах). Яркость (освещенность) отображается на линейке, перпендикулярной плоскости цветового круга (параметр В в процентах). Цвета на внешнем круге имеют максимальную яркость.

Рис. 3 . Графическое представление модели HSB

В некоторых графических редакторах, например в Macromedia FreeHand, используется модель HLS (Hue, Lightness, Saturation), которая похожа на HSB. В модели HLS, в отличие от HSB, вместо яркости используется параметр L- освещенность ( L ightness ). Уменьшение освещенности приближает цвет к черному, а увеличение - к белому. Чистый спектральный цвет получается при освещенности 50%.

Понятия яркости L в моделях Lab и HSB не тождественны . Как и в RGB, смешение цветов из шкал а и b позволяет получить более яркие цвета. Уменьшить яркость результирующего цвета можно за счет параметра яркости L.

Модели HSB и HLS не ориентированы ни на какое техническое устройство воспроизведения цветов, поэтому их называют еще аппаратно независимыми.

Модель HSB основана на трех параметрах: H - оттенок или тон (Hue), S - насыщенность (Saturation) и B - яркость (Brightness). Модель HSB лучше, чемRGBиCMYK, соответствует понятию цвета, которое используют профессиональные художники. У них обычно есть несколько основных красок, а все другие получаются добавлением к ним белой и черной. Таким образом, нужные цвета - это некоторая модификация основных: осветлить или затемнить. Хотя художники и смешивают различные краски, но это уже выходит за рамки модели HSB.

Насыщенность характеризует чистоту цвета. Нулевая насыщенность соответствует серому цвету, а максимальная - наиболее яркому варианту данного цвета. Можно считать, что изменение насыщенности связано с добавлением белой краски. То есть уменьшение насыщенности соответствует добавлению белой краски.

Яркость понимается как степень освещенности. При нулевой яркости цвет становится черным. Максимальная яркость при максимальной насыщенности дают наиболее выразительный вариант данного цвета. Можно также считать, что яркость изменяется путем добавления черной краски. Чем больше черной краски добавлено, тем меньше яркость.

Графически модель HSB можно представить в виде кольца, по окружности которого располагаются оттенки цветов (рис. 6). На внешнем крае круга находятся чистые спектральные цвета или цветовые тона (параметр H измеряется в угловых градусах, от 0 до 360). Чем ближе к центру круга расположен цвет, тем меньше его насыщенность, тем он более блеклый, пастельный (параметр Sизмеряется в процентах). Яркость (освещенность) отображается на линейке, перпендикулярной плоскости цветового круга (параметр B измеряется в процентах). Все цвета на внешнем круге имеют максимальную яркость.

Рис. 6. Графическое представление модели HSB

Цветовые модели HSV и HLS

Приведенные модели не охватывают всего диапазона видимого цвета, поскольку их цветовой охват - это лишь треугольник на графике МКО, вершинам которого соответствуют базовые цвета. Они являются аппаратно ориентированными, т.е. соответствуют технической реализации цвета в устройствах графического вывода. Но психофизиологическое восприятие света определяется не интенсивностью трех первичных цветов, а цветовым тоном, насыщенностью и светлотой. Цветовой тон позволяет различать цвета, насыщенность задает степень "разбавления" чистого тона белым цветом, а светлота - это интенсивность света в целом. Поэтому для адекватного нашему восприятию подбора оттенков более удобными являются модели, в числе параметров которых присутствует тон (Hue). Этот параметр принято измерять углом, отсчитываемым вокруг вертикальной оси. При этом красному цвету соответствует угол 0, зеленому - 120, синему - 240, а дополняющие друг друга цвета расположены один напротив другого, т.е. угол между ними составляет 180. Цвета CMY расположены посредине между составляющими их компонентами RGB. Существует две модели, использующие этот параметр.

Модель HSV (Hue, Saturation, Value, или тон, насыщенность, количество света) можно представить в виде световой шестигранной пирамиды (рис. 2.10), по оси которой откладывается значение V, а расстояние от оси до боковой грани в горизонтальном сечении соответствует параметру S (за диапазон изменения этих величин принимается интервал от нуля до единицы). Значение S равно единице, если точка лежит на боковой грани пирамиды. Шестиугольник, лежащий в основании пирамиды, представляет собой проекцию цветового куба в направлении его главной диагонали.

Преобразование цветового пространства HSV в RGB осуществляется непосредственно с помощью геометрических соотношений между шестигранной пирамидой и кубом.

Цветовая модель HLS (Hue, Lightness, Saturation, или тон, светлота, насыщенность) является расширением модели HSV. Здесь цветовое пространство уже представляется в виде двойной пирамиды (рис. 2.11), в которой по вертикальной оси откладывается L (светлота), а остальные два параметра задаются так же, как и в предыдущей модели. В литературе эти пирамиды иногда называют шестигранным конусом.

На рис.2.12и2.13приведены блок-схемы преобразования моделей HSV и HLS в модель RGB. Алгоритмы обратного преобразования предлагаются читателю в качестве упражнения.

В первом алгоритме используется функция Ent, означающая целую часть числа. Кроме того, используется операция присваивания для векторов. Константа ndf (сокращенное от выражения "not defined" (не определен) ) используется при входе в алгоритм для того, чтобы выяснить, задано ли значение переменной H. Например, по соглашению ndf может быть некоторым отрицательным значением, так как тон - это всегда положительная величина. Во втором алгоритме применяется вспомогательная функция Value (Значение) (H, M1, M2) для вычисления значения компоненты R, G или B в зависимости от ситуации.

Рис. 2.12. Преобразование модели HSV в RGB

Алгоритм преобразования:

Приведение H к заданному диапазону:

Пока H<0 H=H+360

Пока H>360 H=H-360

Определение координат

Если H<60 то Value=M1+(M2-M1)*H/60

Если 60<=H<180 то Value=M2

Если 180<=H<240 то Value=M1+(M2-M1)*(240-H)/60

Если 240<=H то Value=M1

Рис. 2.13. Преобразование модели HLS в RGB

Похожие публикации